BASE CALLING ERROR RATES IN NEXT-GENERATION DNA SEQUENCING

被引:0
|
作者
Shamaiah, Manohar [1 ]
Vikalo, Haris [1 ]
机构
[1] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
来源
2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP) | 2012年
关键词
ALGORITHM;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We study the problem of base calling in next-generation DNA sequencing platforms that rely on reversible terminator chemistry. After reviewing a statistical model of the generated signal and the Viterbi algorithm for finding the maximum-likelihood solution to the base calling problem, we present a closed form expression for the upper bound on the probability of base calling error. Simulation results demonstrate that the derived upper bound provides a useful characterization of the error rate performance of the considered sequencing platform.
引用
收藏
页码:692 / 695
页数:4
相关论文
共 50 条
  • [1] SeqEM: an adaptive genotype-calling approach for next-generation sequencing studies
    Martin, E. R.
    Kinnamon, D. D.
    Schmidt, M. A.
    Powell, E. H.
    Zuchner, S.
    Morris, R. W.
    BIOINFORMATICS, 2010, 26 (22) : 2803 - 2810
  • [2] Indexing Next-Generation Sequencing data
    Jalili, Vahid
    Matteucci, Matteo
    Masseroli, Marco
    Ceri, Stefano
    INFORMATION SCIENCES, 2017, 384 : 90 - 109
  • [3] Alignment of Next-Generation Sequencing Reads
    Reinert, Knut
    Langmead, Ben
    Weese, David
    Evers, Dirk J.
    ANNUAL REVIEW OF GENOMICS AND HUMAN GENETICS, VOL 16, 2015, 16 : 133 - 151
  • [4] Concod: an effective integration framework of consensus-based calling deletions from next-generation sequencing data
    Cai, Lei
    Chu, Chong
    Zhang, Xiaodong
    Wu, Yufeng
    Gao, Jingyang
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2017, 17 (02) : 153 - 172
  • [5] The Genome Assembly Model for Next-Generation Sequencing Data
    Wang, Yirong
    Wei, Chengdong
    Zhang, Xiaodong
    Cen, Tailin
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING AND STATISTICS APPLICATION (AMMSA 2017), 2017, 141 : 97 - 101
  • [6] Removing Sequential Bottlenecks in Analysis of Next-Generation Sequencing Data
    Wang, Yi
    Agrawal, Gagan
    Ozer, Gulcin
    Huang, Kun
    PROCEEDINGS OF 2014 IEEE INTERNATIONAL PARALLEL & DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS (IPDPSW), 2014, : 509 - 518
  • [7] Multicore SIMD ASIP for Next-Generation Sequencing and Alignment Biochip Platforms
    Neves, Nuno
    Sebastiao, Nuno
    Matos, David
    Tomas, Pedro
    Flores, Paulo
    Roma, Nuno
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2015, 23 (07) : 1287 - 1300
  • [8] Next-generation sequencing: big data meets high performance computing
    Schmidt, Bertil
    Hildebrandt, Andreas
    DRUG DISCOVERY TODAY, 2017, 22 (04) : 712 - 717
  • [9] Clinical application of amplicon-based next-generation sequencing in cancer
    Chang, Fengqi
    Li, Marilyn M.
    CANCER GENETICS, 2013, 206 (12) : 413 - 419
  • [10] Search for More Effective Microsatellite Markers for Forensics With Next-Generation Sequencing
    Tan, Bowen
    Zhao, Zicheng
    Zhang, Zhe
    Li, Shengbin
    Li, Shuai Cheng
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2017, 16 (05) : 375 - 381