Direct and Reversible Hydrogenation of CO2 to Formate by a Bacterial Carbon Dioxide Reductase

被引:312
作者
Schuchmann, K. [1 ]
Mueller, V. [1 ]
机构
[1] Johann Wolfgang Goethe Univ Frankfurt Main, Inst Mol Biosci, D-60438 Frankfurt, Germany
关键词
FORMIC-ACID; INTERCONVERSION; DEHYDROGENASE; CATALYST;
D O I
10.1126/science.1244758
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Storage and transportation of hydrogen is a major obstacle for its use as a fuel. An increasingly considered alternative for the direct handling of hydrogen is to use carbon dioxide (CO2) as an intermediate storage material. However, CO2 is thermodynamically stable, and developed chemical catalysts often require high temperatures, pressures, and/or additives for high catalytic rates. Here, we present the discovery of a bacterial hydrogen-dependent carbon dioxide reductase from Acetobacterium woodii directly catalyzing the hydrogenation of CO2. We also demonstrate a whole-cell system able to produce formate as the sole end product from dihydrogen (H-2) and CO2 as well as syngas. This discovery opens biotechnological alternatives for efficient CO2 hydrogenation either by using the isolated enzyme or by employing whole-cell catalysis.
引用
收藏
页码:1382 / 1385
页数:4
相关论文
共 22 条
  • [1] Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO2 Fixation
    Appel, Aaron M.
    Bercaw, John E.
    Bocarsly, Andrew B.
    Dobbek, Holger
    DuBois, Daniel L.
    Dupuis, Michel
    Ferry, James G.
    Fujita, Etsuko
    Hille, Russ
    Kenis, Paul J. A.
    Kerfeld, Cheal A.
    Morris, Robert H.
    Peden, Charles H. F.
    Portis, Archie R.
    Ragsdale, Stephen W.
    Rauchfuss, Thomas B.
    Reek, Joost N. H.
    Seefeldt, Lance C.
    Thauer, Rudolf K.
    Waldrop, Grover L.
    [J]. CHEMICAL REVIEWS, 2013, 113 (08) : 6621 - 6658
  • [2] Overview on Direct Formic Acid Fuel Cells (DFAFCs) as an Energy Sources
    Aslam, N. M.
    Masdar, M. S.
    Kamarudin, S. K.
    Daud, W. R. W.
    [J]. 2ND INTERNATIONAL CONFERENCE ON CHEMISTRY AND CHEMICAL PROCESS (ICCCP 2012), 2012, 3 : 33 - 39
  • [3] A comparative genomic analysis of energy metabolism in sulfate reducing bacteria and archaea
    Cardoso Pereira, Ines A.
    Ramos, Ana Raquel
    Grein, Fabian
    Marques, Marta Coimbra
    da Silva, Sofia Marques
    Venceslau, Sofia Santos
    [J]. FRONTIERS IN MICROBIOLOGY, 2011, 2
  • [4] Crable Bryan R, 2011, Enzyme Res, V2011, P532536, DOI 10.4061/2011/532536
  • [5] Function of formate dehydrogenases in Desulfovibrio vulgaris Hildenborough energy metabolism
    da Silva, Sofia M.
    Voordouw, Johanna
    Leitao, Cristina
    Martins, Monica
    Voordouw, Gerrit
    Pereira, Ines A. C.
    [J]. MICROBIOLOGY-SGM, 2013, 159 : 1760 - 1769
  • [6] Drake S. L. D. H. L., 1994, ACETOGENESIS, P3
  • [7] Carbon dioxide and formic acid-the couple for environmental-friendly hydrogen storage?
    Enthaler, Stephan
    von Langermann, Jan
    Schmidt, Thomas
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (09) : 1207 - 1217
  • [8] Interconversion of CO2 and formic acid by bio-inspired Ir complexes with pendent bases
    Fujita, Etsuko
    Muckerman, James T.
    Himeda, Yuichiro
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2013, 1827 (8-9): : 1031 - 1038
  • [9] Hull JF, 2012, NAT CHEM, V4, P383, DOI [10.1038/nchem.1295, 10.1038/NCHEM.1295]
  • [10] A Cobalt-Based Catalyst for the Hydrogenation of CO2 under Ambient Conditions
    Jeletic, Matthew S.
    Mock, Michael T.
    Appel, Aaron M.
    Linehan, John C.
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (31) : 11533 - 11536