Noisy label tolerance: A new perspective of Partial Multi-Label Learning

被引:32
|
作者
Lyu, Gengyu [1 ]
Feng, Songhe [1 ]
Li, Yidong [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Comp & Informat Technol, Beijing Key Lab Traff Data Anal & Min, Beijing, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Partial Multi-label Learning; Non-disambiguation Strategy; Precise Label; Missing Feature; Feature Completion; PREDICTION;
D O I
10.1016/j.ins.2020.09.019
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Partial Multi-Label learning (PML) aims to learn from training data where each example is associated with a set of candidate labels, among which only a subset of them is correct. The major challenge of PML lies in that the training procedure is prone to be misled by the label noise. To address this problem, nearly all existing PML methods focus on solely label disambiguation, i.e., dislodging the noisy labels from the candidate label set and then utilizing the remaining credible labels for model induction. However, these remaining "credible" labels may be incorrectly identified, which thereby would have a huge adverse impact on the subsequent model induction. In this paper, in contrary to the above label disambiguation strategy, we propose a simple yet effective Noisy lAbel Tolerated pArtial multi-label Learning (NATAL) method, where the labeling information is considered to be precise while the feature information is assumed to be missing. Using our proposed method, the task of PML can be re-interpreted as a Feature Completion problem, and the desired prediction model can be directly induced from the completed feature together with all candidate labels. Extensive experimental results on various data sets clearly demonstrate the effectiveness of our proposed approach. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:454 / 466
页数:13
相关论文
共 50 条
  • [1] Partial Multi-Label Learning With Noisy Label Identification
    Xie, Ming-Kun
    Huang, Sheng-Jun
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (07) : 3676 - 3687
  • [2] Partial Multi-Label Learning with Noisy Label Identification
    Xie, Ming-Kun
    Huang, Sheng-Jun
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6454 - 6461
  • [3] Partial multi-label learning with noisy side information
    Lijuan Sun
    Songhe Feng
    Gengyu Lyu
    Hua Zhang
    Guojun Dai
    Knowledge and Information Systems, 2021, 63 : 541 - 564
  • [4] Partial multi-label learning with noisy side information
    Sun, Lijuan
    Feng, Songhe
    Lyu, Gengyu
    Zhang, Hua
    Dai, Guojun
    KNOWLEDGE AND INFORMATION SYSTEMS, 2021, 63 (02) : 541 - 564
  • [5] Partial Multi-Label Learning with Label Distribution
    Xu, Ning
    Liu, Yun-Peng
    Geng, Xin
    THIRTY-FOURTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THE THIRTY-SECOND INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE AND THE TENTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 34 : 6510 - 6517
  • [6] Partial Multi-Label Learning
    Xie, Ming-Kun
    Huang, Sheng-Jun
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 4302 - 4309
  • [7] Adversarial Partial Multi-Label Learning with Label Disambiguation
    Yan, Yan
    Guo, Yuhong
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10568 - 10576
  • [8] Partial Multi-label Learning using Label Compression
    Yu, Tingting
    Yu, Guoxian
    Wang, Jun
    Domeniconi, Carlotta
    Zhang, Xiangliang
    20TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2020), 2020, : 761 - 770
  • [9] Partial Multi-label Learning with Label and Feature Collaboration
    Yu, Tingting
    Yu, Guoxian
    Wang, Jun
    Guo, Maozu
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2020), PT I, 2020, 12112 : 621 - 637
  • [10] Partial multi-label learning with label and classifier correlations
    Wang, Ke
    Guan, Yahu
    Xie, Yunyu
    Jia, Zhaohong
    Ye, Hong
    Duan, Zhangling
    Liang, Dong
    INFORMATION SCIENCES, 2025, 712