A polar model for fast object tracking in 360-degree camera images

被引:4
作者
Delforouzi, Ahmad [1 ]
Tabatabaei, Seyed Amir Hossein [1 ]
Shirahama, Kimiaki [1 ]
Grzegorzek, Marcin [1 ]
机构
[1] Univ Siegen, Res Grp Pattern Recognit, Hoelderlinstr 3, D-57076 Siegen, Germany
关键词
Object tracking; Polar model; 360-degree camera; Color binary features; OMNIDIRECTIONAL VISION; MULTIPLE;
D O I
10.1007/s11042-018-6525-0
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The task of fast object tracking in polar images using emerging high-resolution 360-degree camera technology is presented in this paper. In this approach, when an arbitrary object has been selected in the first frame, the proposed method searches for the object in the next frames. This task is challenging when the video contains complexity which cannot be handled by common tracking methods. The main contribution of this paper uses polar object selection and color binary features to facilitate robust object tracking in 360-degree images. Using the proposed polar object selection method, each object is represented by a polar component and high performance of the tracking algorithm in terms of precision and speed is achieved. We evaluate the applicability of our approach on a new dataset containing more than 30000 frames of 360-degree images wherein high performance in challenging real-world scenarios is demonstrated. The proposed algorithm outperforms the related methods.
引用
收藏
页码:9275 / 9297
页数:23
相关论文
共 43 条
[1]   Speeded-Up Robust Features (SURF) [J].
Bay, Herbert ;
Ess, Andreas ;
Tuytelaars, Tinne ;
Van Gool, Luc .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2008, 110 (03) :346-359
[2]   Staple: Complementary Learners for Real-Time Tracking [J].
Bertinetto, Luca ;
Valmadre, Jack ;
Golodetz, Stuart ;
Miksik, Ondrej ;
Torr, Philip H. S. .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :1401-1409
[3]  
Bolme DS, 2010, PROC CVPR IEEE, P2544, DOI 10.1109/CVPR.2010.5539960
[4]  
Bouguet JY., 1999, PYRAMIDAL IMPLEMENTA
[5]   BRIEF: Binary Robust Independent Elementary Features [J].
Calonder, Michael ;
Lepetit, Vincent ;
Strecha, Christoph ;
Fua, Pascal .
COMPUTER VISION-ECCV 2010, PT IV, 2010, 6314 :778-792
[6]   Heterogeneous fusion of omnidirectional and PTZ cameras for multiple object tracking [J].
Chen, Chung-Hao ;
Yao, Yi ;
Page, David ;
Abidi, Bcsma ;
Koschan, Andreas ;
Abidi, Mongi .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2008, 18 (08) :1052-1063
[7]   Moving object tracking based on geogram [J].
Choe, Gwangmin ;
Wang, Tianjiang ;
Liu, Fang ;
Li, Gwangho ;
O, Hyongwang ;
Kim, Songryong .
MULTIMEDIA TOOLS AND APPLICATIONS, 2015, 74 (21) :9771-9794
[8]   Tracking Generic Human Motion via Fusion of Low- and High-Dimensional Approaches [J].
Cui, Jinshi ;
Liu, Ye ;
Xu, Yuandong ;
Zhao, Huijing ;
Zha, Hongbin .
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2013, 43 (04) :996-1002
[9]  
Delforouzi A, 2016, INT C PATT RECOG, P1798, DOI 10.1109/ICPR.2016.7899897
[10]  
Delforouzi A, 2016, IEEE INT SYM MULTIM, P347, DOI [10.1109/ISM.2016.0077, 10.1109/ISM.2016.103]