Improved Multiobjective Multifactor Dimensionality Reduction using Fuzzy Theory

被引:0
|
作者
Yang, Cheng-Hong [1 ,2 ]
Moi, Sin-Hua [1 ,3 ,4 ]
Chuang, Li-Yeh [3 ,4 ]
Shih, Tien-Tsorng [1 ]
Lin, Yu-Da [1 ]
机构
[1] Natl Kaohsiung Univ Sci & Technol, Dept Elect Engn, Kaohsiung, Taiwan
[2] PhD Program Biomed Engn, Kaohsiung, Taiwan
[3] I Shou Univ, Dept Chem Engn, Kaohsiung, Taiwan
[4] I Shou Univ, Inst Biotechnol & Chem Engn, Kaohsiung, Taiwan
关键词
Epistasis; multifactor dimensionality reduction; single-nucleotide polymorphism; GENE-GENE INTERACTIONS; EPISTATIC INTERACTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Epistasis identification is essential for understanding the susceptibility of genetic diseases and remains a challenge. Currently, multifactor dimensionality reduction (MDR) has been enhanced using a multiobjective approach to identify epistasis. To reduce the multifactor dimension. MDR-based approaches use a binary classification method to distinguish high risk (H) and low risk (L) groups. However, the limitation of NIDR-based approaches use a binary-classification binary classification that does not reflect the uncertainty of the H/L classification. In this study, we used the membership degree of the empirical fuzzy method to propose an improved multiobjective multifactor dimensionality reduction (MOMDR) approach to overcome the limitation of binary classification. The empirical fuzzy MOMDR considers two fuzzy-based metrics simultaneously, namely the correct classification and likelihood, and does not require adjustment of the parameter values. In simulation studies, the proposed empirical fuzzy MOMDR has demonstrated a higher detection success rate than MDR and MOMDR.
引用
收藏
页码:2476 / 2481
页数:6
相关论文
共 50 条
  • [1] Fuzzy-Based Multiobjective Multifactor Dimensionality Reduction for Epistasis Analysis
    Yang, Cheng-Hong
    Huang, Hsiu-Chen
    Hou, Ming-Feng
    Chuang, Li-Yeh
    Lin, Yu-Da
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (01) : 378 - 387
  • [2] An improved fuzzy set-based multifactor dimensionality reduction for detecting epistasis
    Yang, Cheng-Hong
    Chuang, Li-Yeh
    Lin, Yu-Da
    ARTIFICIAL INTELLIGENCE IN MEDICINE, 2020, 102
  • [3] Improved Multifactor Dimensionality Reduction for Epistasis Detection
    Chuang, Li-Yeh
    Yang, Cheng-Hong
    Lin, Yu-Da
    PROCEEDINGS 2018 IEEE 18TH INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING (BIBE), 2018, : 259 - 262
  • [4] Multiobjective multifactor dimensionality reduction to detect SNP-SNP interactions
    Yang, Cheng-Hong
    Chuang, Li-Yeh
    Lin, Yu-Da
    BIOINFORMATICS, 2018, 34 (13) : 2228 - 2236
  • [5] Multifactor Dimensionality Reduction 2.0
    Moore, J. H.
    Greene, C. S.
    Andrews, P. C.
    GENETIC EPIDEMIOLOGY, 2008, 32 (07) : 708 - 708
  • [6] Multifactor dimensionality reduction 1.0
    Moore, J. H.
    White, B. C.
    Barney, N.
    GENETIC EPIDEMIOLOGY, 2007, 31 (06) : 639 - 639
  • [7] Multifactor dimensionality reduction using normalized mutual information
    Bush, W. S.
    Edwards, T. L.
    Dudek, S. M.
    Ritchie, M. D.
    GENETIC EPIDEMIOLOGY, 2007, 31 (05) : 464 - 464
  • [8] Multiobjective differential evolution-based multifactor dimensionality reduction for detecting gene–gene interactions
    Cheng-Hong Yang
    Li-Yeh Chuang
    Yu-Da Lin
    Scientific Reports, 7
  • [9] A roadmap to multifactor dimensionality reduction methods
    Gola, Damian
    John, Jestinah M. Mahachie
    van Steen, Kristel
    Koenig, Inke R.
    BRIEFINGS IN BIOINFORMATICS, 2016, 17 (02) : 293 - 308
  • [10] Exhaustive Variant Interaction Analysis Using Multifactor Dimensionality Reduction
    Gomez-Sanchez, Gonzalo
    Alonso, Lorena
    Perez, Miguel Angel
    Moran, Ignasi
    Torrents, David
    Berral, Josep Ll.
    APPLIED SCIENCES-BASEL, 2024, 14 (12):