Dynamic intensity normalization using eigen flat fields in X-ray imaging

被引:78
作者
Van Nieuwenhove, Vincent [1 ]
De Beenhouwer, Jan [1 ]
De Carlo, Francesco [2 ]
Mancini, Lucia [3 ]
Marone, Federica [4 ]
Sijbers, Jan [1 ]
机构
[1] Univ Antwerp, Dept Phys, iMinds Vis Lab, B-2020 Antwerp, Belgium
[2] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
[3] Elettra Sincrotrone Trieste SCpA, Trieste, Italy
[4] Paul Scherrer Inst, Swiss Light Source, Villigen, Switzerland
来源
OPTICS EXPRESS | 2015年 / 23卷 / 21期
关键词
ELECTRON TOMOGRAPHY; RING ARTIFACTS; RECONSTRUCTIONS; ALGORITHM; REMOVAL;
D O I
10.1364/OE.23.027975
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In X-ray imaging, it is common practice to normalize the acquired projection data with averaged flat fields taken prior to the scan. Unfortunately, due to source instabilities, vibrating beamline components such as the monochromator, time varying detector properties, or other confounding factors, flat fields are often far from stationary, resulting in significant systematic errors in intensity normalization. In this work, a simple and efficient method is proposed to account for dynamically varying flat fields. Through principal component analysis of a set of flat fields, eigen flat fields are computed. A linear combination of the most important eigen flat fields is then used to individually normalize each X-ray projection. Experiments show that the proposed dynamic flat field correction leads to a substantial reduction of systematic errors in projection intensity normalization compared to conventional flat field correction. (C) 2015 Optical Society of America
引用
收藏
页码:27975 / 27989
页数:15
相关论文
共 22 条
  • [11] CONDITIONING OF QUASI-NEWTON METHODS FOR FUNCTION MINIMIZATION
    SHANNO, DF
    [J]. MATHEMATICS OF COMPUTATION, 1970, 24 (111) : 647 - &
  • [12] Reduction of ring artefacts in high resolution micro-CT reconstructions
    Sijbers, J
    Postnov, A
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2004, 49 (14) : N247 - N253
  • [13] Stock SR., 2008, MICROCOMPUTED TOMOGR
  • [14] Improved tomographic reconstructions using adaptive time-dependent intensity normalization
    Titarenko, Valeriy
    Titarenko, Sofya
    Withers, Philip J.
    De Carlo, Francesco
    Xiao, Xianghui
    [J]. JOURNAL OF SYNCHROTRON RADIATION, 2010, 17 : 689 - 699
  • [15] Signal variations in high-granularity Si pixel detectors
    Tlustos, L
    Campbell, M
    Heijne, E
    Llopart, X
    [J]. IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2004, 51 (06) : 3006 - 3012
  • [16] High-resolution angular beam stability monitoring at a nanofocusing beamline
    Tucoulou, R.
    Martinez-Criado, G.
    Bleuet, P.
    Kieffer, I.
    Cloetens, P.
    Laboure, S.
    Martin, T.
    Guilloud, C.
    Susini, Jean
    [J]. JOURNAL OF SYNCHROTRON RADIATION, 2008, 15 (04) : 392 - 398
  • [17] EIGENFACES FOR RECOGNITION
    TURK, M
    PENTLAND, A
    [J]. JOURNAL OF COGNITIVE NEUROSCIENCE, 1991, 3 (01) : 71 - 86
  • [18] The ASTRA Toolbox: A platform for advanced algorithm development in electron tomography
    van Aarle, Wim
    Palenstijn, Willem Jan
    De Beenhouwer, Jan
    Altantzis, Thomas
    Bals, Sara
    Batenburg, K. Joost
    Sijbers, Jan
    [J]. ULTRAMICROSCOPY, 2015, 157 : 35 - 47
  • [19] [No title captured]
  • [20] [No title captured]