Dynamic intensity normalization using eigen flat fields in X-ray imaging

被引:78
作者
Van Nieuwenhove, Vincent [1 ]
De Beenhouwer, Jan [1 ]
De Carlo, Francesco [2 ]
Mancini, Lucia [3 ]
Marone, Federica [4 ]
Sijbers, Jan [1 ]
机构
[1] Univ Antwerp, Dept Phys, iMinds Vis Lab, B-2020 Antwerp, Belgium
[2] Argonne Natl Lab, Adv Photon Source, Argonne, IL 60439 USA
[3] Elettra Sincrotrone Trieste SCpA, Trieste, Italy
[4] Paul Scherrer Inst, Swiss Light Source, Villigen, Switzerland
来源
OPTICS EXPRESS | 2015年 / 23卷 / 21期
关键词
ELECTRON TOMOGRAPHY; RING ARTIFACTS; RECONSTRUCTIONS; ALGORITHM; REMOVAL;
D O I
10.1364/OE.23.027975
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In X-ray imaging, it is common practice to normalize the acquired projection data with averaged flat fields taken prior to the scan. Unfortunately, due to source instabilities, vibrating beamline components such as the monochromator, time varying detector properties, or other confounding factors, flat fields are often far from stationary, resulting in significant systematic errors in intensity normalization. In this work, a simple and efficient method is proposed to account for dynamically varying flat fields. Through principal component analysis of a set of flat fields, eigen flat fields are computed. A linear combination of the most important eigen flat fields is then used to individually normalize each X-ray projection. Experiments show that the proposed dynamic flat field correction leads to a substantial reduction of systematic errors in projection intensity normalization compared to conventional flat field correction. (C) 2015 Optical Society of America
引用
收藏
页码:27975 / 27989
页数:15
相关论文
共 22 条
  • [1] [Anonymous], 2002, Principal components analysis
  • [2] Raw data normalization for a multi source inverse geometry CT system
    Baek, Jongduk
    De Man, Bruno
    Harrison, Daniel
    Pelc, Norbert J.
    [J]. OPTICS EXPRESS, 2015, 23 (06): : 7514 - 7526
  • [3] Compensation of ring artefacts in synchrotron tomographic images
    Boin, Mirko
    Haibel, Astrid
    [J]. OPTICS EXPRESS, 2006, 14 (25) : 12071 - 12075
  • [4] A non-local algorithm for image denoising
    Buades, A
    Coll, B
    Morel, JM
    [J]. 2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2005, : 60 - 65
  • [5] SCREE TEST FOR NUMBER OF FACTORS
    CATTELL, RB
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 1966, 1 (02) : 245 - 276
  • [6] PARALLEL ANALYSIS - A METHOD FOR DETERMINING SIGNIFICANT PRINCIPAL COMPONENTS
    FRANKLIN, SB
    GIBSON, DJ
    ROBERTSON, PA
    POHLMANN, JT
    FRALISH, JS
    [J]. JOURNAL OF VEGETATION SCIENCE, 1995, 6 (01) : 99 - 106
  • [7] Stripe and ring artifact removal with combined wavelet - Fourier filtering
    Muench, Beat
    Trtik, Pavel
    Marone, Federica
    Stampanoni, Marco
    [J]. OPTICS EXPRESS, 2009, 17 (10): : 8567 - 8591
  • [8] Natterer F., 2001, Classics in Applied Mathematics
  • [9] Performance improvements for iterative electron tomography reconstruction using graphics processing units (GPUs)
    Palenstijn, W. J.
    Batenburg, K. J.
    Sijbers, J.
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 2011, 176 (02) : 250 - 253
  • [10] NONLINEAR TOTAL VARIATION BASED NOISE REMOVAL ALGORITHMS
    RUDIN, LI
    OSHER, S
    FATEMI, E
    [J]. PHYSICA D, 1992, 60 (1-4): : 259 - 268