The Influence of Absorber Thickness on Cu(In,Ga)Se2 Solar Cells With Different Buffer Layers

被引:46
作者
Pettersson, Jonas [1 ]
Torndahl, Tobias [1 ]
Platzer-Bjorkman, Charlotte [1 ]
Hultqvist, Adam [2 ]
Edoff, Marika [1 ]
机构
[1] Uppsala Univ, Div Solid State Elect, Angstrom Solar Ctr, SE-75121 Uppsala, Sweden
[2] Stanford Univ, Dept Chem Engn, Stanford, CA 94305 USA
来源
IEEE JOURNAL OF PHOTOVOLTAICS | 2013年 / 3卷 / 04期
关键词
Photovoltaic cells; semiconductor device modeling; ELECTRONIC-PROPERTIES; BACK CONTACT; DEPOSITION;
D O I
10.1109/JPHOTOV.2013.2276030
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This study investigates the interplay between the absorber layer of Cu(In,Ga)Se-2 solar cells and the other layers of these devices. Cu(In, Ga)Se-2 devices with absorbers of different thicknesses and different buffer layers are fabricated. Absorber layers and finished devices are characterized. Good efficiencies are obtained, also for devices of substandard thickness down to 0.3 mu m. Best open-circuit voltages and fill factors are found for cells with half the standard absorber thickness, but the highest efficiencies are found for cells with the standard thickness of 1.6 mu m due to their higher short-circuit current density. Cu(In, Ga)Se-2 cells with Zn(O,S) buffer layers are more efficient than CdS reference devices for the same absorber thickness due to a higher short-circuit current. For cells with thin absorber layers, a part of the higher current is caused by higher quantum efficiency at long wavelengths. Electrical simulations indicate that the loss in the open-circuit voltage for the thinnest devices is due to recombination in the back contact region. The difference in long-wavelength quantum efficiency between the buffer layers is attributed to a difference in the CIGS band bending. Acceptors at the Cu(In, Ga)Se-2-CdS interface are proposed as an explanation for this difference. A low-quality back contact region enhances the effect.
引用
收藏
页码:1376 / 1382
页数:7
相关论文
共 33 条
[1]   Optical functions of chalcopyrite CuGaxIn1-xSe2 alloys [J].
Alonso, MI ;
Garriga, M ;
Rincón, CAD ;
Hernández, E ;
León, M .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2002, 74 (05) :659-664
[2]  
[Anonymous], P 19 EUR PHOT SOL EN
[3]   Modelling polycrystalline semiconductor solar cells [J].
Burgelman, M ;
Nollet, P ;
Degrave, S .
THIN SOLID FILMS, 2000, 361 :527-532
[4]   The potential of textured front ZnO and flat TCO/metal back contact to improve optical absorption in thin Cu(In,Ga)Se2 solar cells [J].
Campa, A. ;
Krc, J. ;
Malmstrom, J. ;
Edoff, M. ;
Smole, F. ;
Topic, M. .
THIN SOLID FILMS, 2007, 515 (15) :5968-5972
[5]   Optical approaches to improve the photocurrent generation in Cu(In,Ga)Se2 solar cells with absorber thicknesses down to 0.5 μm [J].
Dahan, N. ;
Jehl, Z. ;
Hildebrandt, T. ;
Greffet, J. -J. ;
Guillemoles, J. -F. ;
Lincot, D. ;
Naghavi, N. .
JOURNAL OF APPLIED PHYSICS, 2012, 112 (09)
[6]   Simulation and implementation of a porous silicon reflector for epitaxial silicon solar cells [J].
Duerinckx, Filip ;
Kuzma-Filipek, Izabela ;
Van Nieuwenhuysen, Kris ;
Beaucarne, Guy ;
Poortmans, Jef .
PROGRESS IN PHOTOVOLTAICS, 2008, 16 (05) :399-407
[7]   Interpretation of admittance, capacitance-voltage, and current-voltage signatures in Cu(In,Ga)Se2 thin film solar cells [J].
Eisenbarth, Tobias ;
Unold, Thomas ;
Caballero, Raquel ;
Kaufmann, Christian A. ;
Schock, Hans-Werner .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (03)
[8]   Mo/Cu(In, Ga)Se2 back interface chemical and optical properties for ultrathin CIGSe solar cells [J].
Erfurth, F. ;
Jehl, Z. ;
Bouttemy, M. ;
Dahan, N. ;
Tran-Van, P. ;
Gerard, I. ;
Etcheberry, A. ;
Greffet, J. -J. ;
Powalla, M. ;
Voorwinden, G. ;
Lincot, D. ;
Guillemoles, J. F. ;
Naghavi, N. .
APPLIED SURFACE SCIENCE, 2012, 258 (07) :3058-3061
[9]  
Gloeckler M., 2005, J APPL PHYS, V98
[10]   Influence of the Ga-content on the bulk defect densities of Cu(In,Ga)Se2 [J].
Hanna, G ;
Jasenek, A ;
Rau, U ;
Schock, HW .
THIN SOLID FILMS, 2001, 387 (1-2) :71-73