Astronomical algorithms for automated analysis of tissue protein expression in breast cancer

被引:27
作者
Ali, H. R. [1 ,2 ,3 ,4 ]
Irwin, M. [5 ]
Morris, L. [2 ]
Dawson, S-J [1 ,2 ,3 ,4 ]
Blows, F. M. [6 ]
Provenzano, E. [2 ,3 ,4 ,7 ,8 ]
Mahler-Araujo, B. [2 ,3 ,4 ,7 ,8 ]
Pharoah, P. D. [1 ,6 ,7 ]
Walton, N. A. [5 ]
Brenton, J. D. [1 ,2 ]
Caldas, C. [1 ,2 ,3 ,4 ,7 ]
机构
[1] Univ Cambridge, Dept Oncol, Cambridge CB1 9RN, England
[2] Li Ka Shing Ctr, Canc Res UK Cambridge Res Inst, Cambridge CB2 ORE, England
[3] Cambridge Univ Hosp NHS Fdn Trust, Addenbrookes Hosp, Cambridge Breast Unit, Cambridge CB2 2QQ, England
[4] NIHR Cambridge Biomed Res Ctr, Cambridge CB2 2QQ, England
[5] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England
[6] Univ Cambridge, Strangeways Res Labs, Cambridge CB1 9RN, England
[7] Cambridge Expt Canc Med Ctr ECMC, Cambridge, England
[8] Cambridge Univ Hosp NHS Fdn Trust, Addenbrookes Hosp, Dept Histopathol, Cambridge CB2 2QQ, England
基金
英国医学研究理事会;
关键词
image analysis; immunohistochemistry; breast cancer; systems pathology; digital pathology; QUANTITATIVE IMAGE-ANALYSIS; AVAILABLE WEB APPLICATION; SYSTEMS PATHOLOGY; MICROARRAYS; ESTROGEN; IMMUNOHISTOCHEMISTRY; PREDICTION; CARCINOMA; PR; ER;
D O I
10.1038/bjc.2012.558
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: High-throughput evaluation of tissue biomarkers in oncology has been greatly accelerated by the widespread use of tissue microarrays (TMAs) and immunohistochemistry. Although TMAs have the potential to facilitate protein expression profiling on a scale to rival experiments of tumour transcriptomes, the bottleneck and imprecision of manually scoring TMAs has impeded progress. Methods: We report image analysis algorithms adapted from astronomy for the precise automated analysis of IHC in all subcellular compartments. The power of this technique is demonstrated using over 2000 breast tumours and comparing quantitative automated scores against manual assessment by pathologists. Results: All continuous automated scores showed good correlation with their corresponding ordinal manual scores. For oestrogen receptor (ER), the correlation was 0.82, P < 0.0001, for BCL2 0.72, P < 0.0001 and for HER2 0.62, P < 0.0001. Automated scores showed excellent concordance with manual scores for the unsupervised assignment of cases to 'positive' or 'negative' categories with agreement rates of up to 96%. Conclusion: The adaptation of astronomical algorithms coupled with their application to large annotated study cohorts, constitutes a powerful tool for the realisation of the enormous potential of digital pathology.
引用
收藏
页码:602 / 612
页数:11
相关论文
共 26 条
  • [1] High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses
    Abd El-Rehim, DM
    Ball, G
    Pinder, SE
    Rakha, E
    Paish, C
    Robertson, JFR
    Macmillan, D
    Blamey, RW
    Ellis, IO
    [J]. INTERNATIONAL JOURNAL OF CANCER, 2005, 116 (03) : 340 - 350
  • [2] Cancer stem cell markers in breast cancer: pathological, clinical and prognostic significance
    Ali, H. Raza
    Dawson, Sarah-Jane
    Blows, Fiona M.
    Provenzano, Elena
    Pharoah, Paul D.
    Caldas, Carlos
    [J]. BREAST CANCER RESEARCH, 2011, 13 (06):
  • [3] [Anonymous], 1983, UNDERSTANDING ROBUST
  • [4] Subtyping of Breast Cancer by Immunohistochemistry to Investigate a Relationship between Subtype and Short and Long Term Survival: A Collaborative Analysis of Data for 10,159 Cases from 12 Studies
    Blows, Fiona M.
    Driver, Kristy E.
    Schmidt, Marjanka K.
    Broeks, Annegien
    van Leeuwen, Flora E.
    Wesseling, Jelle
    Cheang, Maggie C.
    Gelmon, Karen
    Nielsen, Torsten O.
    Blomqvist, Carl
    Heikkila, Paivi
    Heikkinen, Tuomas
    Nevanlinna, Heli
    Akslen, Lars A.
    Begin, Louis R.
    Foulkes, William D.
    Couch, Fergus J.
    Wang, Xianshu
    Cafourek, Vicky
    Olson, Janet E.
    Baglietto, Laura
    Giles, Graham G.
    Severi, Gianluca
    McLean, Catriona A.
    Southey, Melissa C.
    Rakha, Emad
    Green, Andrew R.
    Ellis, Ian O.
    Sherman, Mark E.
    Lissowska, Jolanta
    Anderson, William F.
    Cox, Angela
    Cross, Simon S.
    Reed, Malcolm W. R.
    Provenzano, Elena
    Dawson, Sarah-Jane
    Dunning, Alison M.
    Humphreys, Manjeet
    Easton, Douglas F.
    Garcia-Closas, Montserrat
    Caldas, Carlos
    Pharoah, Paul D.
    Huntsman, David
    [J]. PLOS MEDICINE, 2010, 7 (05)
  • [5] Assessment of Automated Image Analysis of Breast Cancer Tissue Microarrays for Epidemiologic Studies
    Bolton, Kelly L.
    Garcia-Closas, Montserrat
    Pfeiffer, Ruth M.
    Duggan, Maire A.
    Howat, William J.
    Hewitt, Stephen M.
    Yang, Xiaohong R.
    Cornelison, Robert
    Anzick, Sarah L.
    Meltzer, Paul
    Davis, Sean
    Lenz, Petra
    Figueroa, Jonine D.
    Pharoah, Paul D. P.
    Sherman, Mark E.
    [J]. CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2010, 19 (04) : 992 - 999
  • [6] Digital image analysis of membrane connectivity is a robust measure of HER2 immunostains
    Brugmann, Anja
    Eld, Mikkel
    Lelkaitis, Giedrius
    Nielsen, Soren
    Grunkin, Michael
    Hansen, Johan D.
    Foged, Niels T.
    Vyberg, Mogens
    [J]. BREAST CANCER RESEARCH AND TREATMENT, 2012, 132 (01) : 41 - 49
  • [7] Molecular classification of breast carcinomas using tissue microarrays
    Callagy, G
    Cattaneo, E
    Daigo, Y
    Happerfield, L
    Bobrow, LG
    Pharoah, PDP
    Caldas, C
    [J]. DIAGNOSTIC MOLECULAR PATHOLOGY, 2003, 12 (01) : 27 - 34
  • [8] Automated subcellular localization and quantification of protein expression in tissue microarrays
    Camp, RL
    Chung, GG
    Rimm, DL
    [J]. NATURE MEDICINE, 2002, 8 (11) : 1323 - 1327
  • [9] Improved prediction of prostate cancer recurrence through systems pathology
    Cordon-Cardo, Carlos
    Kotsianti, Angeliki
    Verbel, David A.
    Teverovskiy, Mikhail
    Capodieci, Paola
    Hamann, Stefan
    Jeffers, Yusuf
    Clayton, Mark
    Elkhettabi, Faysal
    Khan, Faisal M.
    Sapir, Marina
    Bayer-Zubek, Valentina
    Vengrenyuk, Yevgen
    Fogarsi, Stephen
    Saidi, Olivier
    Reuter, Victor E.
    Scher, Howard I.
    Kattan, Michael W.
    Bianco, Fernando J., Jr.
    Wheeler, Thomas M.
    Ayala, Gustavo E.
    Scardino, Peter T.
    Donovan, Michael J.
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2007, 117 (07) : 1876 - 1883
  • [10] BCL2 in breast cancer: a favourable prognostic marker across molecular subtypes and independent of adjuvant therapy received
    Dawson, S-J
    Makretsov, N.
    Blows, F. M.
    Driver, K. E.
    Provenzano, E.
    Le Quesne, J.
    Baglietto, L.
    Severi, G.
    Giles, G. G.
    McLean, C. A.
    Callagy, G.
    Green, A. R.
    Ellis, I.
    Gelmon, K.
    Turashvili, G.
    Leung, S.
    Aparicio, S.
    Huntsman, D.
    Caldas, C.
    Pharoah, P.
    [J]. BRITISH JOURNAL OF CANCER, 2010, 103 (05) : 668 - 675