The stable limit cycles: A synchronization phenomenon

被引:0
作者
Gine, Jaume [1 ]
机构
[1] Univ Lleida, Dept Matemat, Escola Politecn Super, Lleida 25001, Catalonia, Spain
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2013年 / 350卷 / 07期
关键词
PERIODIC-SOLUTIONS; SYSTEMS; STABILITY;
D O I
10.1016/j.jfranklin.2013.04.015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this short survey a general introduction to synchronization phenomenon is presented. The stable limit cycles that appear in the nonlinear differential systems are actually a manifestation of the synchronization phenomenon. (C) 2013 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1649 / 1657
页数:9
相关论文
共 50 条
  • [41] Computation and stability of limit cycles in hybrid systems
    Flieller, D
    Riedinger, P
    Louis, JP
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (02) : 352 - 367
  • [42] Limit cycles of Abel equations of the first kind
    Alvarez, A.
    Bravo, J. L.
    Fernandez, M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 423 (01) : 734 - 745
  • [43] STABILITY OF SINGULAR LIMIT CYCLES FOR ABEL EQUATIONS
    Luis Bravo, Jose
    Fernandez, Manuel
    Gasull, Armengol
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (05) : 1873 - 1890
  • [44] On the number of limit cycles of a pendulum-like equation with two switching lines
    Yang, Jihua
    CHAOS SOLITONS & FRACTALS, 2021, 150
  • [45] Complexity of limit cycles with block-sequential update schedules in conjunctive networks
    Aracena, Julio
    Bridoux, Florian
    Gomez, Luis
    Salinas, Lilian
    NATURAL COMPUTING, 2023, 22 (03) : 411 - 429
  • [46] On the limit cycles of a quintic planar vector field
    Yu-hai WU~(1+) Li-xin TIAN~1 Mao-an HAN~2 1 Department of Mathematics
    2 Department of Mathematics
    Science in China(Series A:Mathematics), 2007, (07) : 925 - 940
  • [47] Centers and limit cycles for a family of Abel equations
    Alvarez, M. J.
    Bravo, J. L.
    Fernandez, M.
    Prohens, R.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 453 (01) : 485 - 501
  • [48] Robust chaos synchronization using input-to-state stable control
    Ahn, Choon Ki
    PRAMANA-JOURNAL OF PHYSICS, 2010, 74 (05): : 705 - 718
  • [49] Stability of limit cycles in autonomous nonlinear systems
    Jiří Náprstek
    Cyril Fischer
    Meccanica, 2014, 49 : 1929 - 1943
  • [50] On the stability of limit cycles for planar differential systems
    Giacomini, H
    Grau, A
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 213 (02) : 368 - 388