The stable limit cycles: A synchronization phenomenon

被引:0
|
作者
Gine, Jaume [1 ]
机构
[1] Univ Lleida, Dept Matemat, Escola Politecn Super, Lleida 25001, Catalonia, Spain
来源
JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS | 2013年 / 350卷 / 07期
关键词
PERIODIC-SOLUTIONS; SYSTEMS; STABILITY;
D O I
10.1016/j.jfranklin.2013.04.015
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this short survey a general introduction to synchronization phenomenon is presented. The stable limit cycles that appear in the nonlinear differential systems are actually a manifestation of the synchronization phenomenon. (C) 2013 The Franklin Institute. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1649 / 1657
页数:9
相关论文
共 50 条
  • [11] An intriguing hybrid synchronization phenomenon of two coupled complex networks
    Sun, Wen
    Chen, Zhong
    Lue, Yibing
    Chen, Shihua
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (08) : 2301 - 2309
  • [12] Limit cycles for a class of second order differential equations
    Llibre, Jaume
    Ernesto, Perez-Chavela
    PHYSICS LETTERS A, 2011, 375 (07) : 1080 - 1083
  • [13] Bifurcation of limit cycles near equivariant compound cycles
    Han, Mao-an
    Zhang, Tong-hua
    Zang, Hong
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (04): : 503 - 514
  • [14] On Limit Cycles of Autonomous Systems
    T. M. Ivanova
    A. B. Kostin
    A. I. Rubinshtein
    V. B. Sherstyukov
    Journal of Mathematical Sciences, 2024, 286 (1) : 68 - 88
  • [15] Bifurcation of limit cycles near equivariant compound cycles
    Mao-an Han
    Tong-hua Zhang
    Hong Zang
    Science in China Series A: Mathematics, 2007, 50 : 503 - 514
  • [16] Friction generated limit cycles
    Olsson, H
    Åström, KJ
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2001, 9 (04) : 629 - 636
  • [17] Bifurcation of limit cycles near equivariant compound cycles
    Mao-an HAN
    ScienceinChina(SeriesA:Mathematics), 2007, (04) : 503 - 514
  • [18] Limit cycles at oversteer vehicle
    Steindl, Alois
    Edelmann, Johannes
    Ploechl, Manfred
    NONLINEAR DYNAMICS, 2020, 99 (01) : 313 - 321
  • [19] Limit Cycles for the Kukles system
    Hong Zang
    Tonghua Zhang
    Yu-Chu Tian
    Moses O. Tadé
    Journal of Dynamical and Control Systems, 2008, 14 : 283 - 298
  • [20] Limit cycles for the kukles system
    Zang, Hong
    Zhang, Tonghua
    Tian, Yu-Chu
    Tade, Moses O.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2008, 14 (02) : 283 - 298