From Dirac neutrino masses to baryonic and dark matter asymmetries

被引:32
作者
Gu, Pei-Hong [1 ]
机构
[1] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany
关键词
MIRROR WORLD; STERILE NEUTRINOS; BARYOGENESIS; LEPTOGENESIS; TRIPLET; CONSEQUENCES; VIOLATION; MIXINGS; PHYSICS; MODELS;
D O I
10.1016/j.nuclphysb.2013.03.014
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider an SU (3)'(c) x SU (2)'(L), x U(1)'(Y) dark sector, parallel to the SU (3)(c) x SU (2)(L) x U (1)(Y) ordinary sector. The hypercharges, baryon numbers and lepton numbers in the dark sector are opposite to those in the ordinary sector. We further introduce three types of messenger sectors: (i) two or more gauge-singlet Dirac fermions, (ii) two or more [SU (2)(L) x SU(2)'(L)]-bidoublet Higgs scalars, (iii) at least one gauge-singlet Dirac fermion and at least one [SU(2)(L) x SU(2)'(L))-bidoublet Higgs scalar. The lepton number conserving decays of the heavy fermion singlet(s) and/or Higgs bidoublet(s) can simultaneously generate a lepton asymmetry in the [SU(2)(L)]-doublet leptons and an opposite lepton asymmetry in the [SU(2)'(L)]-doublet leptons to account for the cosmological baryon asymmetry and dark matter relic density, respectively. The lightest dark nucleon as the dark matter particle should have a mass about 5 GeV. By integrating out the heavy fermion singlet(s) and/or Higgs bidoublet(s), we can obtain three light Dirac neutrinos composed of the ordinary and dark neutrinos. If a mirror symmetry is further imposed, our models will not require more unknown parameters than the traditional type-I, type-II or type-I+II seesaw models. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:38 / 61
页数:24
相关论文
共 126 条
  • [1] Abel S., 2006, J HIGH ENERGY PHYS, V0605, P024
  • [2] Baryon number in warped grand unified theories: model building and (dark matter related) phenomenology
    Agashe, K
    Servant, G
    [J]. JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2005, (02): : 27 - 92
  • [3] PLANCK-SCALE PHYSICS AND NEUTRINO MASSES
    AKHMEDOV, EK
    BEREZHIANI, ZG
    SENJANOVIC, G
    [J]. PHYSICAL REVIEW LETTERS, 1992, 69 (21) : 3013 - 3016
  • [4] Energy dependence of direct detection cross section for asymmetric mirror dark matter
    An, Haipeng
    Chen, Shao-Long
    Mohapatra, Rabindra N.
    Nussinov, Shmuel
    Zhang, Yue
    [J]. PHYSICAL REVIEW D, 2010, 82 (02):
  • [5] Search for Light Dark Matter in XENON10 Data
    Angle, J.
    Aprile, E.
    Arneodo, F.
    Baudis, L.
    Bernstein, A.
    Bolozdynya, A. I.
    Coelho, L. C. C.
    Dahl, C. E.
    DeViveiros, L.
    Ferella, A. D.
    Fernandes, L. M. P.
    Fiorucci, S.
    Gaitskell, R. J.
    Giboni, K. L.
    Gomez, R.
    Hasty, R.
    Kastens, L.
    Kwong, J.
    Lopes, J. A. M.
    Madden, N.
    Manalaysay, A.
    Manzur, A.
    McKinsey, D. N.
    Monzani, M. E.
    Ni, K.
    Oberlack, U.
    Orboeck, J.
    Plante, G.
    Santorelli, R.
    dos Santos, J. M. F.
    Schulte, S.
    Shagin, P.
    Shutt, T.
    Sorensen, P.
    Winant, C.
    Yamashita, M.
    [J]. PHYSICAL REVIEW LETTERS, 2011, 107 (05)
  • [6] Anna C., ARXIV12060009HEPPH
  • [7] [Anonymous], ARXIV12031247HEPPH
  • [8] Type II leptogenesis and the neutrino mass scale
    Antusch, S
    King, SF
    [J]. PHYSICS LETTERS B, 2004, 597 (02) : 199 - 207
  • [9] Asymmetric inelastic inert doublet dark matter from triplet scalar leptogenesis
    Arina, Chiara
    Sahu, Narendra
    [J]. NUCLEAR PHYSICS B, 2012, 854 (03) : 666 - 699
  • [10] The vMSM, dark matter and neutrino masses
    Asaka, T
    Blanchet, S
    Shaposhnikov, M
    [J]. PHYSICS LETTERS B, 2005, 631 (04) : 151 - 156