From Dirac neutrino masses to baryonic and dark matter asymmetries

被引:32
作者
Gu, Pei-Hong [1 ]
机构
[1] Max Planck Inst Kernphys, D-69117 Heidelberg, Germany
关键词
MIRROR WORLD; STERILE NEUTRINOS; BARYOGENESIS; LEPTOGENESIS; TRIPLET; CONSEQUENCES; VIOLATION; MIXINGS; PHYSICS; MODELS;
D O I
10.1016/j.nuclphysb.2013.03.014
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider an SU (3)'(c) x SU (2)'(L), x U(1)'(Y) dark sector, parallel to the SU (3)(c) x SU (2)(L) x U (1)(Y) ordinary sector. The hypercharges, baryon numbers and lepton numbers in the dark sector are opposite to those in the ordinary sector. We further introduce three types of messenger sectors: (i) two or more gauge-singlet Dirac fermions, (ii) two or more [SU (2)(L) x SU(2)'(L)]-bidoublet Higgs scalars, (iii) at least one gauge-singlet Dirac fermion and at least one [SU(2)(L) x SU(2)'(L))-bidoublet Higgs scalar. The lepton number conserving decays of the heavy fermion singlet(s) and/or Higgs bidoublet(s) can simultaneously generate a lepton asymmetry in the [SU(2)(L)]-doublet leptons and an opposite lepton asymmetry in the [SU(2)'(L)]-doublet leptons to account for the cosmological baryon asymmetry and dark matter relic density, respectively. The lightest dark nucleon as the dark matter particle should have a mass about 5 GeV. By integrating out the heavy fermion singlet(s) and/or Higgs bidoublet(s), we can obtain three light Dirac neutrinos composed of the ordinary and dark neutrinos. If a mirror symmetry is further imposed, our models will not require more unknown parameters than the traditional type-I, type-II or type-I+II seesaw models. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:38 / 61
页数:24
相关论文
共 126 条
[1]  
Abel S., 2006, J HIGH ENERGY PHYS, V0605, P024
[2]   Baryon number in warped grand unified theories: model building and (dark matter related) phenomenology [J].
Agashe, K ;
Servant, G .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2005, (02) :27-92
[3]   PLANCK-SCALE PHYSICS AND NEUTRINO MASSES [J].
AKHMEDOV, EK ;
BEREZHIANI, ZG ;
SENJANOVIC, G .
PHYSICAL REVIEW LETTERS, 1992, 69 (21) :3013-3016
[4]   Energy dependence of direct detection cross section for asymmetric mirror dark matter [J].
An, Haipeng ;
Chen, Shao-Long ;
Mohapatra, Rabindra N. ;
Nussinov, Shmuel ;
Zhang, Yue .
PHYSICAL REVIEW D, 2010, 82 (02)
[5]   Search for Light Dark Matter in XENON10 Data [J].
Angle, J. ;
Aprile, E. ;
Arneodo, F. ;
Baudis, L. ;
Bernstein, A. ;
Bolozdynya, A. I. ;
Coelho, L. C. C. ;
Dahl, C. E. ;
DeViveiros, L. ;
Ferella, A. D. ;
Fernandes, L. M. P. ;
Fiorucci, S. ;
Gaitskell, R. J. ;
Giboni, K. L. ;
Gomez, R. ;
Hasty, R. ;
Kastens, L. ;
Kwong, J. ;
Lopes, J. A. M. ;
Madden, N. ;
Manalaysay, A. ;
Manzur, A. ;
McKinsey, D. N. ;
Monzani, M. E. ;
Ni, K. ;
Oberlack, U. ;
Orboeck, J. ;
Plante, G. ;
Santorelli, R. ;
dos Santos, J. M. F. ;
Schulte, S. ;
Shagin, P. ;
Shutt, T. ;
Sorensen, P. ;
Winant, C. ;
Yamashita, M. .
PHYSICAL REVIEW LETTERS, 2011, 107 (05)
[6]  
Anna C., ARXIV12060009HEPPH
[7]  
[Anonymous], ARXIV12031247HEPPH
[8]   Type II leptogenesis and the neutrino mass scale [J].
Antusch, S ;
King, SF .
PHYSICS LETTERS B, 2004, 597 (02) :199-207
[9]   Asymmetric inelastic inert doublet dark matter from triplet scalar leptogenesis [J].
Arina, Chiara ;
Sahu, Narendra .
NUCLEAR PHYSICS B, 2012, 854 (03) :666-699
[10]   The vMSM, dark matter and neutrino masses [J].
Asaka, T ;
Blanchet, S ;
Shaposhnikov, M .
PHYSICS LETTERS B, 2005, 631 (04) :151-156