SAMPLE PATH LARGE DEVIATIONS FOR SQUARES OF STATIONARY GAUSSIAN PROCESSES

被引:3
作者
Zani, M. [1 ]
机构
[1] Univ Paris Est Creteil, CNRS, UMR 8050, Lab Anal & Math Appl, F-94010 Creteil, France
关键词
Gaussian processes; large deviations; Szego theorem; Toeplitz matrices;
D O I
10.1137/S0040585X97986023
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we show large deviations for random step functions of type Z(n)(t) = 1/n Sigma([nt])(k=1) X-k(2), where {X-k}(k) is a stationary Gaussian process. We deal with the associated random measures nu(n) = 1/n Sigma(n)(k=1) X-k(2)delta(k/n). The proofs require a Szego theorem for generalized Toeplitz matrices which is analogous to a result of Kac, Murdoch, and Szego [J. Rational Mech. Anal., 2 (1953), pp. 767-800]. We also study the polygonal line built on Zn(t) and show moderate deviations for both random families.
引用
收藏
页码:347 / U223
页数:11
相关论文
共 21 条
[11]   LARGE DEVIATIONS FOR PROCESSES WITH INDEPENDENT INCREMENTS [J].
LYNCH, J ;
SETHURAMAN, J .
ANNALS OF PROBABILITY, 1987, 15 (02) :610-627
[12]   Large deviations for weighted empirical mean with outliers [J].
Maieda, M. ;
Najim, J. ;
Peche, S. .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2007, 117 (10) :1373-1403
[13]   LARGE DEVIATIONS FOR TRAJECTORIES OF MULTIDIMENSIONAL RANDOM-WALKS [J].
MOGULSKII, AA .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 1976, 21 (02) :300-315
[14]   LARGE DEVIATIONS FOR PROCESSES WITH INDEPENDENT INCREMENTS [J].
MOGULSKII, AA .
ANNALS OF PROBABILITY, 1993, 21 (01) :202-215
[15]  
NAJIM J, 2002, ELECTRON J PROBAB, V7, P1
[16]  
Perrin O., 2005, [Записки научных семинаров Санкт-Петербургского отделения математического института им. В.А. Стеклова РАН, Zapiski nauchnykh seminarov Sankt-Peterburgskogo otdeleniya matematicheskogo instituta im. V.A. Steklova RAN], V328, P169
[17]  
Rockafellar R. T., 1970, Convex Analysis
[18]   INTEGRALS WHICH ARE CONVEX FUNCTIONALS .2. [J].
ROCKAFELLAR, RT .
PACIFIC JOURNAL OF MATHEMATICS, 1971, 39 (02) :439-+
[19]  
Sanov I. N., 1957, Mat. Sbornik USSR, V84, P11
[20]   ASYMPTOTIC PROBABILITIES AND DIFFERENTIAL EQUATIONS [J].
VARADHAN, SR .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1966, 19 (03) :261-&