SAMPLE PATH LARGE DEVIATIONS FOR SQUARES OF STATIONARY GAUSSIAN PROCESSES

被引:3
作者
Zani, M. [1 ]
机构
[1] Univ Paris Est Creteil, CNRS, UMR 8050, Lab Anal & Math Appl, F-94010 Creteil, France
关键词
Gaussian processes; large deviations; Szego theorem; Toeplitz matrices;
D O I
10.1137/S0040585X97986023
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we show large deviations for random step functions of type Z(n)(t) = 1/n Sigma([nt])(k=1) X-k(2), where {X-k}(k) is a stationary Gaussian process. We deal with the associated random measures nu(n) = 1/n Sigma(n)(k=1) X-k(2)delta(k/n). The proofs require a Szego theorem for generalized Toeplitz matrices which is analogous to a result of Kac, Murdoch, and Szego [J. Rational Mech. Anal., 2 (1953), pp. 767-800]. We also study the polygonal line built on Zn(t) and show moderate deviations for both random families.
引用
收藏
页码:347 / U223
页数:11
相关论文
共 21 条
[1]  
Bhatia R., 1996, MATRIX ANAL
[2]   BOUNDARY-VALUE PROBLEMS FOR RANDOM WALKS AND LARGE DEVIATIONS IN FUNCTION SPACES [J].
BOROVKOV, AA .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1967, 12 (04) :575-&
[3]   LARGE DEVIATIONS FOR VECTOR-VALUED LEVY PROCESSES [J].
DEACOSTA, A .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1994, 51 (01) :75-115
[4]   Large deviations for subsampling from individual sequences [J].
Dembo, A ;
Zeitouni, O .
STATISTICS & PROBABILITY LETTERS, 1996, 27 (03) :201-205
[5]  
Dembo A., 1998, LARGE DEVIATIONS TEC
[6]  
Dupuis P., 1997, A weak convergence approach to the theory of large deviations
[7]   A functional large deviations principle for quadratic forms of Gaussian stationary processes [J].
Gamboa, F ;
Rouault, A ;
Zani, M .
STATISTICS & PROBABILITY LETTERS, 1999, 43 (03) :299-308
[8]  
Gamboa F, 1997, ANN STAT, V25, P328
[9]  
Grenander U, 1958, California Monographs in Mathematical Sciences
[10]  
KAC M, 1953, J RATION MECH ANAL, V2, P767