Aerodynamic Analysis of a Flapping Wing Aircraft for Short Landing

被引:1
|
作者
Ji, Bing [1 ]
Zhu, Zenggang [1 ]
Guo, Shijun [2 ]
Chen, Si [3 ]
Zhu, Qiaolin [1 ]
Li, Yushuai [1 ]
Yang, Fan [1 ]
Song, Rui [1 ]
Li, Yibin [1 ]
机构
[1] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Peoples R China
[2] Cranfield Univ, Sch Aerosp Transport & Mfg, Cranfield MK43 0AL, Beds, England
[3] Nanjing Univ Aeronaut & Astronaut, Coll Aerosp Engn, Nanjing 210016, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 10期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
flapping wing; short landing; unsteady aerodynamic model; experimental aircraft model; LIFT; KINEMATICS; MODEL; FLIGHT; FORCE;
D O I
10.3390/app10103404
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An investigation into the aerodynamic characteristics has been presented for a bio-inspired flapping wing aircraft. Firstly, a mechanism has been developed to transform the usual rotation powered by a motor to a combined flapping and pitching motion of the flapping wing. Secondly, an experimental model of the flapping wing aircraft has been built and tested to measure the motion and aerodynamic forces produced by the flapping wing. Thirdly, aerodynamic analysis is carried out based on the measured motion of the flapping wing model using an unsteady aerodynamic model (UAM) and validated by a computational fluid dynamics (CFD) method. The difference of the average lift force between the UAM and CFD method is 1.3%, and the difference between the UAM and experimental results is 18%. In addition, a parametric study is carried out by employing the UAM method to analyze the effect of variations of the pitching angle on the aerodynamic lift and drag forces. According to the study, the pitching amplitude for maximum lift is in the range of 60 degrees similar to 70 degrees as the flight velocity decreases from 5 m/s to 1 m/s during landing.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Effect of acceleration on aerodynamic performance of flapping wing air vehicle
    Li, Zhandong
    Gong, Changquan
    Zhao, Xinyu
    Ma, Shuang
    Wang, Wei
    Zhao, Jinfang
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2024, 46 (01)
  • [32] Aerodynamic optimization of a micro flapping rotary wing in hovering flight
    Wang, Luyao
    Wang, Yan Qing
    ACTA MECHANICA, 2024, 235 (08) : 5357 - 5377
  • [33] Effects of Stroke Deviation on Aerodynamic Force Production of a Flapping Wing
    Luo, Guoyu
    Du, Gang
    Sun, Mao
    AIAA JOURNAL, 2018, 56 (01) : 25 - 35
  • [34] Experimental investigation of aerodynamic parameters on flapping wing
    Yilmaz, Ilker
    Keiyinci, Sinan
    Cam, Omer
    Karci, Adem
    JOURNAL OF THE FACULTY OF ENGINEERING AND ARCHITECTURE OF GAZI UNIVERSITY, 2017, 32 (04): : 1035 - 1050
  • [35] Design and aerodynamic analysis of a flapping-wing micro aerial vehicle
    Tsai, Bor-Jang
    Fu, Yu-Chun
    AEROSPACE SCIENCE AND TECHNOLOGY, 2009, 13 (07) : 383 - 392
  • [36] The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight
    Sane, SP
    Dickinson, MH
    JOURNAL OF EXPERIMENTAL BIOLOGY, 2002, 205 (08) : 1087 - 1096
  • [37] Aerodynamic Characteristics of a Tandem Flapping Wing in Inclined Stroke Plane Hovering with Ground Effect
    Shanmugam, Arun Raj
    Sohn, Chang Hyun
    Park, Ki Sun
    BIOMIMETICS, 2025, 10 (04)
  • [38] Difficulty of Controlling a Flapping-wing Aircraft Compared to a Rotary-wing Aircraft
    Kimura, Kengo
    Sunada, Shigeru
    TRANSACTIONS OF THE JAPAN SOCIETY FOR AERONAUTICAL AND SPACE SCIENCES, 2023, 66 (04) : 130 - 140
  • [39] Analysis and Design of Bat-Like Flapping-Wing Aircraft
    Wang, Fan
    Pei, Xinbiao
    Wu, Guangxin
    Bai, Yue
    AEROSPACE, 2024, 11 (04)
  • [40] Kinematic and experimental aerodynamic characterisation of the RotaFlap - a novel flapping wing mechanism
    Ania, A.
    Poirel, D.
    Potvin, M-J.
    AERONAUTICAL JOURNAL, 2011, 115 (1163) : 1 - 13