Aerodynamic Analysis of a Flapping Wing Aircraft for Short Landing

被引:1
|
作者
Ji, Bing [1 ]
Zhu, Zenggang [1 ]
Guo, Shijun [2 ]
Chen, Si [3 ]
Zhu, Qiaolin [1 ]
Li, Yushuai [1 ]
Yang, Fan [1 ]
Song, Rui [1 ]
Li, Yibin [1 ]
机构
[1] Shandong Univ, Sch Control Sci & Engn, Jinan 250061, Peoples R China
[2] Cranfield Univ, Sch Aerosp Transport & Mfg, Cranfield MK43 0AL, Beds, England
[3] Nanjing Univ Aeronaut & Astronaut, Coll Aerosp Engn, Nanjing 210016, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2020年 / 10卷 / 10期
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
flapping wing; short landing; unsteady aerodynamic model; experimental aircraft model; LIFT; KINEMATICS; MODEL; FLIGHT; FORCE;
D O I
10.3390/app10103404
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An investigation into the aerodynamic characteristics has been presented for a bio-inspired flapping wing aircraft. Firstly, a mechanism has been developed to transform the usual rotation powered by a motor to a combined flapping and pitching motion of the flapping wing. Secondly, an experimental model of the flapping wing aircraft has been built and tested to measure the motion and aerodynamic forces produced by the flapping wing. Thirdly, aerodynamic analysis is carried out based on the measured motion of the flapping wing model using an unsteady aerodynamic model (UAM) and validated by a computational fluid dynamics (CFD) method. The difference of the average lift force between the UAM and CFD method is 1.3%, and the difference between the UAM and experimental results is 18%. In addition, a parametric study is carried out by employing the UAM method to analyze the effect of variations of the pitching angle on the aerodynamic lift and drag forces. According to the study, the pitching amplitude for maximum lift is in the range of 60 degrees similar to 70 degrees as the flight velocity decreases from 5 m/s to 1 m/s during landing.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Short Landing Performance and Scale Effect of a Flapping Wing Aircraft
    Chen, Si
    Guo, Shijun
    Li, Hao
    Tong, Mingbo
    Ji, Bing
    JOURNAL OF AEROSPACE ENGINEERING, 2020, 33 (06)
  • [2] Sensitivity Analysis of Wing Geometric and Kinematic Parameters for the Aerodynamic Performance of Hovering Flapping Wing
    Lang, Xinyu
    Song, Bifeng
    Yang, Wenqing
    Yang, Xiaojun
    Xue, Dong
    AEROSPACE, 2023, 10 (01)
  • [3] Effect of Wing Membrane Material on the Aerodynamic Performance of Flexible Flapping Wing
    Lang, Xinyu
    Song, Bifeng
    Yang, Wenqing
    Yang, Xiaojun
    APPLIED SCIENCES-BASEL, 2022, 12 (09):
  • [4] Aerodynamic performance of a bio-inspired flapping wing with local sweep morphing
    Wang, Chunyu
    Liu, Yi
    Xu, Duo
    Wang, Shizhao
    PHYSICS OF FLUIDS, 2022, 34 (05)
  • [5] Effect of Wing Twisting on Aerodynamic Performance of Flapping Wing System
    Tri Quang Truong
    Vu Hoang Phan
    Park, Hoon Cheol
    Ko, Jin Hwan
    AIAA JOURNAL, 2013, 51 (07) : 1612 - 1620
  • [6] Unsteady aerodynamic and optimal kinematic analysis of a micro flapping wing rotor
    Li, H.
    Guo, S.
    Zhang, Y. L.
    Zhou, C.
    Wu, J. H.
    AEROSPACE SCIENCE AND TECHNOLOGY, 2017, 63 : 167 - 178
  • [7] Unsteady aerodynamic model of flexible flapping wing
    Chen, Si
    Li, Hao
    Guo, Shijun
    Tong, Mingbo
    Ji, Bing
    AEROSPACE SCIENCE AND TECHNOLOGY, 2018, 80 : 354 - 367
  • [8] Flapping Mechanism Design and Aerodynamic Analysis for the Flapping Wing Micro Air Vehicle
    Qin, Yi
    Zhang, Weiping
    Chen, Wenyuan
    Liu, Wu
    Li, Hongyi
    Chi, Pengcheng
    Meng, Kun
    Cui, Feng
    Wu, Xiaosheng
    MATERIALS PROCESSING TECHNOLOGY, PTS 1-4, 2011, 291-294 : 1543 - +
  • [9] Numerical investigation of the aerodynamic benefits of wing-wing interactions in a dragonfly-like flapping wing
    Shanmugam, A. R.
    Sohn, C. H.
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2019, 33 (06) : 2725 - 2735
  • [10] Sizing process, aerodynamic analysis, and experimental assessment of a biplane flapping wing nano air vehicle
    Ghommem, Mehdi
    Hassanalian, Mostafa
    Al-Marzooqi, Majed
    Throneberry, Glen
    Abdelkefi, Abdessattar
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART G-JOURNAL OF AEROSPACE ENGINEERING, 2019, 233 (15) : 5618 - 5636