Electrocatalysis of oxygen reduction on nitrogen-containing multi-walled carbon nanotube modified glassy carbon electrodes

被引:116
作者
Vikkisk, Merilin [1 ]
Kruusenberg, Ivar [1 ]
Joost, Urmas [2 ]
Shulga, Eugene [2 ]
Tammeveski, Kaido [1 ]
机构
[1] Univ Tartu, Inst Chem, EE-50411 Tartu, Estonia
[2] Univ Tartu, Inst Phys, EE-51014 Tartu, Estonia
关键词
Oxygen reduction; Electrocatalysis; Nitrogen doping; Carbon nanotubes; Alkaline membrane fuel cells; DOPED GRAPHENE SHEETS; O-2; REDUCTION; ELECTROCHEMICAL REDUCTION; CATHODE CATALYSTS; METAL ELECTROCATALYSTS; COMPOSITE CATALYSTS; FREE GROWTH; GRAPHITE; ACID; SURFACE;
D O I
10.1016/j.electacta.2012.09.071
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The electrochemical reduction of oxygen was studied on nitrogen-doped multi-walled carbon nanotube (NCNT) modified glassy carbon (GC) electrodes employing the rotating disk electrode (RDE) method. Nitrogen doping was achieved by simple pyrolysis of the carbon nanotube material in the presence of urea. The surface morphology and composition of the NCNT samples were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The SEM images revealed a rather uniform distribution of NCNTs on the GC electrode substrate. The XPS analysis showed a successful doping of carbon nanotubes with nitrogen species. The RDE results revealed that in alkaline solution the N-doped nanotube materials showed a remarkable electrocatalytic activity towards oxygen reduction. At low overpotentials the reduction of oxygen followed a two-electron pathway on undoped carbon nanotube modified GC electrodes, whereas on NCNT/GC electrodes a four-electron pathway of O-2 reduction predominated. The results obtained are significant for the development of nitrogen-doped carbon-based cathodes for alkaline membrane fuel cells. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:709 / 716
页数:8
相关论文
共 99 条
[1]   Electroreduction of oxygen on nitrogen-doped carbon nanotube modified glassy carbon electrodes in acid and alkaline solutions [J].
Alexeyeva, N. ;
Shulga, E. ;
Kisand, V. ;
Kink, I. ;
Tammeveski, K. .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2010, 648 (02) :169-175
[2]   Electrochemical reduction of oxygen on multiwalled carbon nanotube modified glassy carbon electrodes in acid media [J].
Alexeyeva, Nadezda ;
Tammeveski, Kaido .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2007, 10 (05) :F18-F21
[3]  
[Anonymous], 2001, ELECTROCHEMICAL METH
[4]   A class of non-precious metal composite catalysts for fuel cells [J].
Bashyam, Rajesh ;
Zelenay, Piotr .
NATURE, 2006, 443 (7107) :63-66
[5]   A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction [J].
Bezerra, Cicero W. B. ;
Zhang, Lei ;
Lee, Kunchan ;
Liu, Hansan ;
Marques, Aldalea L. B. ;
Marques, Edmar P. ;
Wang, Haijiang ;
Zhang, Jiujun .
ELECTROCHIMICA ACTA, 2008, 53 (15) :4937-4951
[6]   Role of Graphitic Edge Plane Exposure in Carbon Nanostructures for Oxygen Reduction Reaction [J].
Biddinger, Elizabeth J. ;
Ozkan, Umit S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (36) :15306-15314
[7]   Nitrogen-Containing Carbon Nanostructures as Oxygen-Reduction Catalysts [J].
Biddinger, Elizabeth J. ;
von Deak, Dieter ;
Ozkan, Umit S. .
TOPICS IN CATALYSIS, 2009, 52 (11) :1566-1574
[8]   A review on non-precious metal electrocatalysts for PEM fuel cells [J].
Chen, Zhongwei ;
Higgins, Drew ;
Yu, Aiping ;
Zhang, Lei ;
Zhang, Jiujun .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3167-3192
[9]   Nitrogen doped carbon nanotubes and their impact on the oxygen reduction reaction in fuel cells [J].
Chen, Zhu ;
Higgins, Drew ;
Chen, Zhongwei .
CARBON, 2010, 48 (11) :3057-3065
[10]   Electrocatalytic activity of nitrogen doped carbon nanotubes with different morphologies for oxygen reduction reaction [J].
Chen, Zhu ;
Higgins, Drew ;
Chen, Zhongwei .
ELECTROCHIMICA ACTA, 2010, 55 (16) :4799-4804