Matryoshka-type gastro-resistant microparticles for the oral treatment of Mycobacterium tuberculosis

被引:20
作者
Andreu, Vanesa [1 ]
Larrea, Ane [1 ,2 ]
Rodriguez-Fernandez, Pablo [3 ,4 ,5 ,6 ]
Alfaro, Salvador [1 ]
Gracia, Begona [4 ,7 ,8 ]
Lucia, Ainhoa [4 ,7 ,8 ]
Uson, Laura [1 ,2 ]
Gomez, Andromeda-Celeste [3 ,4 ,5 ,6 ]
Mendoza, Gracia [1 ]
Lacoma, Alicia [3 ,4 ,5 ]
Dominguez, Jose [3 ,4 ,5 ]
Prat, Cristina [3 ,4 ,5 ]
Sebastian, Victor [1 ,2 ]
Antonio Ainsa, Jose [4 ,7 ,8 ]
Arruebo, Manuel [1 ,2 ]
机构
[1] Univ Zaragoza, Dept Chem Engn, Aragon Inst Nanosci INA, Campus Rio Ebro Edificio I D, Zaragoza 50018, Spain
[2] CIBER BBN, Networking Res Ctr Bioengn Biomat & Nanomed, Madrid 28029, Spain
[3] Hosp Badalona Germans Trias & Pujol, Serv Microbiol, Inst Ciencies Salut Germans Trias & Pujol, Badalona, Spain
[4] Inst Salud Carlos III, CIBER Enfermedades Resp CIBERES, Madrid, Spain
[5] Univ Autonoma Barcelona, Dept Genet & Microbiol, Barcelona, Spain
[6] Inst Biotecnol & Biomed, Dept Genet & Microbiol, Barcelona, Spain
[7] Univ Zaragoza, Dept Microbiol Med Prevent & Salud Publ, Domingo Miral S-N, Zaragoza 50009, Spain
[8] Univ Zaragoza, BIFI, Domingo Miral S-N, Zaragoza 50009, Spain
关键词
enteric coating; eudragit; gastroresistant; microparticles; Mycobacterium tuberculosis; oral delivery; PLGA; rifampicin; TEER; tuberculosis; PLGA NANOPARTICLES; DRUG-DELIVERY; POLYMERIC NANOPARTICLES; RIFAMPICIN; MACROPHAGES; INFECTION; SYSTEM;
D O I
10.2217/nnm-2018-0258
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Aim: Production of Matryoshka-type gastroresistant microparticles containing antibiotic-loaded poly lactic-co-glycolic acid (PLGA) nanoparticles (NP) against Mycobacterium tuberculosis. Materials & methods: The emulsification and evaporation methods were followed for the synthesis of PLGA-NPs and methacrylic acid-ethyl acrylate-based coatings to protect rifampicin from degradation under simulated gastric conditions. Results & conclusion: The inner antibiotic-loaded NPs here reported can be released under simulated intestinal conditions whereas their coating protects them from degradation under simulated gastric conditions. The encapsulation does not hinder the antituberculosis action of the encapsulated antibiotic rifampicin. A sustained antibiotic release could be obtained when using the drug-loaded encapsulated NPs. Compared with the administration of the free drug, a more effective elimination of M. tuberculosis was observed when applying the NPs against infected macrophages. The antibiotic-loaded PLGA-NPs were also able to cross an in vitro model of intestinal barrier. Matryoshka-type gastroresistant microparticles containing antibiotic-loaded poly lactic-co-glycolic acid nanoparticles against M. tuberculosis were produced to protect the antibiotic from degradation under simulated gastric conditions. The antibiotic-loaded poly lactic-co-glycolic acid nanoparticles were able to cross an in vitro model of intestinal barrier, being more effective in the elimination of M. tuberculosis when applied against infected macrophages compared with the use of the free drug. [GRAPHICS]
引用
收藏
页码:707 / 726
页数:20
相关论文
共 41 条
[1]   Therapeutic drug monitoring in the treatment of active tuberculosis [J].
Babalik, Aylin ;
Mannix, Sharyn ;
Francis, Denis ;
Menzies, Dick .
CANADIAN RESPIRATORY JOURNAL, 2011, 18 (04) :225-229
[2]   Gastrointestinal distribution and in vivo gene transfection studies with nanoparticles-in-microsphere oral system (NiMOS) [J].
Bhavsar, Mayank D. ;
Amiji, Mansoor M. .
JOURNAL OF CONTROLLED RELEASE, 2007, 119 (03) :339-348
[3]   In vivo/in vitro pharmacokinetic and pharmacodynamic study of spray-dried poly-(DL-lactic-co-glycolic) acid nanoparticles encapsulating rifampicin and isoniazid [J].
Booysen, L. L. I. J. ;
Kalombo, L. ;
Brooks, E. ;
Hansen, R. ;
Gilliland, J. ;
Gruppo, V. ;
Lungenhofer, P. ;
Semete-Makokotlela, B. ;
Swai, H. S. ;
Kotze, A. F. ;
Lenaerts, A. ;
du Plessis, L. H. .
INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2013, 444 (1-2) :10-17
[4]   Structural mechanism for rifampicin inhibition of bacterial RNA polymerase [J].
Campbell, EA ;
Korzheva, N ;
Mustaev, A ;
Murakami, K ;
Nair, S ;
Goldfarb, A ;
Darst, SA .
CELL, 2001, 104 (06) :901-912
[5]   Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv [J].
Camus, JC ;
Pryor, MJ ;
Médigue, C ;
Cole, ST .
MICROBIOLOGY-SGM, 2002, 148 :2967-2973
[6]   Intracellular pharmacodynamics of antibiotics [J].
Carryn, S ;
Chanteux, H ;
Seral, C ;
Mingeot-Leclercq, MP ;
Van Bambeke, F ;
Tulkens, PM .
INFECTIOUS DISEASE CLINICS OF NORTH AMERICA, 2003, 17 (03) :615-+
[7]  
Choudhary Naiyma, 2014, Perspect Clin Res, V5, P80, DOI 10.4103/2229-3485.128027
[8]   Gastrointestinal uptake of biodegradable microparticles: Effect of particle size [J].
Desai, MP ;
Labhasetwar, V ;
Amidon, GL ;
Levy, RJ .
PHARMACEUTICAL RESEARCH, 1996, 13 (12) :1838-1845
[9]   Oral drug delivery with polymeric nanoparticles: The gastrointestinal mucus barriers [J].
Ensign, Laura M. ;
Cone, Richard ;
Hanes, Justin .
ADVANCED DRUG DELIVERY REVIEWS, 2012, 64 (06) :557-570
[10]   Isoniazid, rifampicin and pyrazinamide plasma concentrations 2 and 6 h post dose in patients with pulmonary tuberculosis [J].
Fahimi, F. ;
Tabarsi, P. ;
Kobarfard, F. ;
Bozorg, B. D. ;
Goodarzi, A. ;
Dastan, F. ;
Shahsavari, N. ;
Emami, S. ;
Habibi, M. ;
Salamzadeh, J. .
INTERNATIONAL JOURNAL OF TUBERCULOSIS AND LUNG DISEASE, 2013, 17 (12) :1602-1606