On the existence of universal series by trigonometric system

被引:13
作者
Episkoposian, SA [1 ]
机构
[1] Yerevan State Univ, Dept Phys, Yerevan 375049, Armenia
关键词
universal series; weighted space; trigonometric system;
D O I
10.1016/j.jfa.2005.05.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove the following: let omega(t) be a continuous function, increasing in [0, 00) and omega(+0) = 0. Then there exists a series of the form Sigma(infinity)(k=-infinity) C(k)e(ikx) with Sigma(infinity)(k=-infinity) C-k(2) omega(vertical bar C-k vertical bar) < infinity, C-k = <(C)over bar>(k) with the following property: for each epsilon > 0 a weighted function mu (x), 0 < mu(x) <= 1, vertical bar{x is an element of [0,2 pi] : mu(x) not equal 1}vertical bar < epsilon can be constructed, so that the series is universal in the weighted space L-mu(1)[0,2 pi] with respect to rearrangements. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:169 / 183
页数:15
相关论文
共 10 条
[1]  
BARY NK, 1964, TRIGONOMETRIC SERIES
[2]  
Episkoposian S. A., 2003, J CONTEMP MATH ANAL, V38, P25
[3]  
EPISKOPOSIAN SA, 1999, E J APPROX, V5, P483
[4]  
Grigorian M. G., 1999, STUD MATH, V134, P211
[5]   Some ramifications of a theorem of Boas and Pollard concerning the completion of a set of functions in L2 [J].
Kazarian, KS ;
Zink, RE .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 349 (11) :4367-4383
[6]  
Kozlov V. Ya., 1950, MAT SB, V26(68), P351
[7]  
Men'shov DE., 1947, MAT SB, V20, P197
[8]  
ORLICZ W, 1927, B ACAD POL SCI, V81, P117
[9]  
TALALYAN AA, 1957, IZV AN ARMSSR FMN, V10, P17
[10]  
TALALYAN AA, 1960, IZV AKAD NAUK SSSR M, V24, P567