Indefinite kernel spectral learning

被引:8
作者
Mehrkanoon, Siamak [1 ]
Huang, Xiaolin [2 ,3 ]
Suykens, Johan A. K. [1 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn ESAT STADIUS, Kasteelpk Arenberg 10, B-3001 Heverlee, Belgium
[2] Shanghai Jiao Tong Univ, Inst Image Proc & Pattern Recognit, Shanghai 200240, Peoples R China
[3] Shanghai Jiao Tong Univ, MOE Key Lab Syst Control & Informat Proc, Shanghai 200240, Peoples R China
基金
欧洲研究理事会; 中国国家自然科学基金;
关键词
Semi-supervised learning; Scalable models; Indefinite kernels; Kernel spectral clustering; Low embedding dimension;
D O I
10.1016/j.patcog.2018.01.014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The use of indefinite kernels has attracted many research interests in recent years due to their flexibility. They do not possess the usual restrictions of being positive definite as in the traditional study of kernel methods. This paper introduces the indefinite unsupervised and semi-supervised learning in the framework of least squares support vector machines (LS-SVM). The analysis is provided for both unsupervised and semi-supervised models, i.e., Kernel Spectral Clustering (KSC) and Multi-Class Semi-Supervised Kernel Spectral Clustering (MSS-KSC). In indefinite KSC models one solves an eigenvalue problem whereas indefinite MSS-KSC finds the solution by solving a linear system of equations. For the proposed indefinite models, we give the feature space interpretation, which is theoretically important, especially for the scalability using Nystrom approximation. Experimental results on several real-life datasets are given to illustrate the efficiency of the proposed indefinite kernel spectral learning. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:144 / 153
页数:10
相关论文
共 30 条
  • [11] Indefinite kernels in least squares support vector machines and principal component analysis
    Huang, Xiaolin
    Maier, Andreas
    Hornegger, Joachim
    Suykens, Johan A. K.
    [J]. APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2017, 43 (01) : 162 - 172
  • [12] Classification With Truncated l1 Distance Kernel
    Huang, Xiaolin
    Suykens, Johan A. K.
    Wang, Shuning
    Hornegger, Joachim
    Maier, Andreas
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (05) : 2025 - 2030
  • [13] Multi-task proximal support vector machine
    Li, Ya
    Tian, Xinmei
    Song, Mingli
    Tao, Dacheng
    [J]. PATTERN RECOGNITION, 2015, 48 (10) : 3249 - 3257
  • [14] Lin H.-T., 2003, INTERNAL REPORT
  • [15] Learning SVM in Krein Spaces
    Loosli, Gaelle
    Canu, Stephane
    Ong, Cheng Soon
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (06) : 1204 - 1216
  • [16] Luss R., 2008, ADV NEURAL INFORM PR, P953
  • [17] Mann G. S., 2007, P 24 INT C MACH LEAR, P593, DOI DOI 10.1145/1273496.1273571
  • [18] Mehrkanoon S, 2016, IEEE IJCNN, P4009, DOI 10.1109/IJCNN.2016.7727721
  • [19] Mehrkanoon S, 2014, IEEE IJCNN, P4152, DOI 10.1109/IJCNN.2014.6889824
  • [20] Incremental multi-class semi-supervised clustering regularized by Kalman filtering
    Mehrkanoon, Siamak
    Agudelo, Oscar Mauricio
    Suykens, Johan A. K.
    [J]. NEURAL NETWORKS, 2015, 71 : 88 - 104