Hierarchical batch-to-batch optimization of cobalt oxalate synthesis process based on data-driven model

被引:5
|
作者
Jia, Runda [1 ,2 ]
Mao, Zhizhong [1 ,2 ]
He, Dakuo [1 ,2 ]
Chu, Fei [3 ]
机构
[1] Northeastern Univ, Sch Informat Sci & Engn, Shenyang 110004, Liaoning, Peoples R China
[2] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110004, Liaoning, Peoples R China
[3] China Univ Min & Technol, Sch Informat & Control Engn, Xuzhou 221116, Jiangsu, Peoples R China
来源
CHEMICAL ENGINEERING RESEARCH & DESIGN | 2019年 / 144卷
基金
中国国家自然科学基金;
关键词
Batch processes; Data-driven model; Cobalt oxalate synthesis process; Hierarchical batch-to-batch optimization; PARTICLE-SIZE DISTRIBUTION; PARTIAL LEAST-SQUARES; RUN OPTIMIZATION; STRATEGY; TIME; DESIGN; POWDER;
D O I
10.1016/j.cherd.2019.01.032
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The synthesis process has been widely used in cobalt hydrometallurgical industry. To better operate the cobalt oxalate synthesis process, a data-driven model based hierarchical batch to-batch optimization method is presented in this work. In the upper level of hierarchy, the proposed response surface model based modifier-adaptation (MA) strategy is used to calculate the nominal control profile for the next level, and the design of dynamic experiment (DODE) method is also employed to symmetrically generate the dataset for response surface model building. In the lower level of hierarchy, the batch-wise unfolded PLS (BW-PLS) model based self-tuning batch-to-batch optimization method is utilized to further refine the control profile on the basis of the result of the upper level. The main advantages of the proposed method are: (i) the size of the dataset for data-driven model building are rather modest, (ii) the control profile can be discretized into a large number of intervals to further improve the optimization performances, and (iii) the unqualified batches is efficiently avoided during the evolution of batch-to-batch optimization. The superior performances for the cobalt oxalate synthesis process are verified through simulation study. (C) 2019 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:185 / 197
页数:13
相关论文
共 50 条
  • [41] Strategy for ship energy efficiency based on optimization model and data-driven approach
    Karatug, Caglar
    Tadros, Mina
    Ventura, Manuel
    Soares, C. Guedes
    OCEAN ENGINEERING, 2023, 279
  • [42] Adaptive multi-LSSVR based soft sensing for cobalt oxalate synthesis process
    Zhang, Shuning
    Wang, Fuli
    He, Dakuo
    Jia, Runda
    2011 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-6, 2011, : 255 - 260
  • [43] Data-driven Dynamic Modeling and Fault Diagnosis of Dimethyl Oxalate Industrial Production Process
    Zhang, Jingxuan
    Yu, Guo
    Bo, Cuimei
    Li, Jun
    2024 6TH INTERNATIONAL CONFERENCE ON DATA-DRIVEN OPTIMIZATION OF COMPLEX SYSTEMS, DOCS 2024, 2024, : 250 - 255
  • [44] Towards sustainable scheduling of unrelated parallel batch processors: A multiobjective approach with triple bottom line, classical and data-driven robust optimization
    Fallahi, Ali
    Bani, Erfan Amani
    Varmazyar, Mohsen
    COMPUTERS & OPERATIONS RESEARCH, 2025, 173
  • [45] Quality-related process monitoring for dynamic non-Gaussian batch process with multi-phase using a new data-driven method
    Peng, Kaixiang
    Li, Qianqian
    Zhang, Kai
    Dong, Jie
    NEUROCOMPUTING, 2016, 214 : 317 - 328
  • [46] Data-driven geometry-based topology optimization
    Hoang, Van-Nam
    Nguyen, Ngoc-Linh
    Tran, Dat Q.
    Vu, Quang-Viet
    Nguyen-Xuan, H.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2022, 65 (02)
  • [47] Data-driven robust optimization based on kernel learning
    Shang, Chao
    Huang, Xiaolin
    You, Fengqi
    COMPUTERS & CHEMICAL ENGINEERING, 2017, 106 : 464 - 479
  • [48] Multimode process monitoring based on data-driven method
    Du, Wenyou
    Fan, Yunpeng
    Zhang, Yingwei
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2017, 354 (06): : 2613 - 2627
  • [49] Batch Process Modelling and Optimal Control Based on Neural Network Model
    Jie Zhang School of Chemical Engineering Advanced Materials University of Newcastle Newcastle upon Tyne NE RU UK
    自动化学报, 2005, (01) : 19 - 31
  • [50] Batch process monitoring based on functional data analysis and support vector data description
    Yao, Ma
    Wang, Huangang
    Xu, Wenli
    JOURNAL OF PROCESS CONTROL, 2014, 24 (07) : 1085 - 1097