Multivariate time series dataset for space weather data analytics

被引:72
作者
Angryk, Rafal A. [1 ]
Martens, Petrus C. [2 ]
Aydin, Berkay [1 ]
Kempton, Dustin [1 ]
Mahajan, Sushant S. [2 ]
Basodi, Sunitha [1 ]
Ahmadzadeh, Azim [1 ]
Cai, Xumin [1 ]
Filali Boubrahimi, Soukaina [1 ]
Hamdi, Shah Muhammad [1 ]
Schuh, Michael A. [1 ]
Georgoulis, Manolis K. [2 ,3 ]
机构
[1] Georgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USA
[2] Georgia State Univ, Dept Phys & Astron, Atlanta, GA 30303 USA
[3] Acad Athens, RCAAM, Athens, Greece
基金
美国国家科学基金会;
关键词
MAGNETIC-FIELD PROPERTIES; SOLAR-FLARE PRODUCTIVITY; QUIET ACTIVE REGIONS; GRADIENT;
D O I
10.1038/s41597-020-0548-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We introduce and make openly accessible a comprehensive, multivariate time series (MVTS) dataset extracted from solar photospheric vector magnetograms in Spaceweather HMI Active Region Patch (SHARP) series. Our dataset also includes a cross-checked NOAA solar flare catalog that immediately facilitates solar flare prediction efforts. We discuss methods used for data collection, cleaning and pre-processing of the solar active region and flare data, and we further describe a novel data integration and sampling methodology. Our dataset covers 4,098 MVTS data collections from active regions occurring between May 2010 and December 2018, includes 51 flare-predictive parameters, and integrates over 10,000 flare reports. Potential directions toward expansion of the time series, either "horizontally" - by adding more prediction-specific parameters, or "vertically" - by generalizing flare into integrated solar eruption prediction, are also explained. The immediate tasks enabled by the disseminated dataset include: optimization of solar flare prediction and detailed investigation for elusive flare predictors or precursors, with both operational (research-to-operations), and basic research (operations-to-research) benefits potentially following in the future.
引用
收藏
页数:13
相关论文
共 59 条
  • [1] Ahmadzadeh A., 2019, 2019 18 IEEE INT C M
  • [2] Ahmadzadeh A, 2019, IEEE INT CONF BIG DA, P1423, DOI 10.1109/BigData47090.2019.9006505
  • [3] Solar Flare Prediction Using Advanced Feature Extraction, Machine Learning, and Feature Selection
    Ahmed, Omar W.
    Qahwaji, Rami
    Colak, Tufan
    Higgins, Paul A.
    Gallagher, Peter T.
    Bloomfield, D. Shaun
    [J]. SOLAR PHYSICS, 2013, 283 (01) : 157 - 175
  • [4] Angryk R., 2020, SWAN-SF, DOI DOI 10.7910/DVN/EBCFKM
  • [5] A COMPARISON OF FLARE FORECASTING METHODS. I. RESULTS FROM THE "ALL-CLEAR" WORKSHOP
    Barnes, G.
    Leka, K. D.
    Schrijver, C. J.
    Colak, T.
    Qahwaji, R.
    Ashamari, O. W.
    Yuan, Y.
    Zhang, J.
    McAteer, R. T. J.
    Bloomfield, D. S.
    Higgins, P. A.
    Gallagher, P. T.
    Falconer, D. A.
    Georgoulis, M. K.
    Wheatland, M. S.
    Balch, C.
    Dunn, T.
    Wagner, E. L.
    [J]. ASTROPHYSICAL JOURNAL, 2016, 829 (02)
  • [6] Basodi S, 2017, IEEE INT CONF BIG DA, P2527, DOI 10.1109/BigData.2017.8258211
  • [7] Flare Observations
    Benz, Arnold O.
    [J]. LIVING REVIEWS IN SOLAR PHYSICS, 2008, 5 (01) : 1 - 64
  • [8] SOLAR FLARE PREDICTION USING SDO/HMI VECTOR MAGNETIC FIELD DATA WITH A MACHINE-LEARNING ALGORITHM
    Bobra, M. G.
    Couvidat, S.
    [J]. ASTROPHYSICAL JOURNAL, 2015, 798 (02)
  • [9] The Helioseismic and Magnetic Imager (HMI) Vector Magnetic Field Pipeline: SHARPs - Space-Weather HMI Active Region Patches
    Bobra, M. G.
    Sun, X.
    Hoeksema, J. T.
    Turmon, M.
    Liu, Y.
    Hayashi, K.
    Barnes, G.
    Leka, K. D.
    [J]. SOLAR PHYSICS, 2014, 289 (09) : 3549 - 3578
  • [10] PREDICTION OF SOLAR FLARE SIZE AND TIME-TO-FLARE USING SUPPORT VECTOR MACHINE REGRESSION
    Boucheron, Laura E.
    Al-Ghraibah, Amani
    McAteer, R. T. James
    [J]. ASTROPHYSICAL JOURNAL, 2015, 812 (01)