A locking-free stabilized kinematic EFG model for plane strain limit analysis

被引:20
作者
Le, C. V. [2 ]
Askes, H. [1 ]
Gilbert, M. [1 ]
机构
[1] Univ Sheffield, Dept Civil & Struct Engn, Sheffield S10 2TN, S Yorkshire, England
[2] Int Univ, VNU HCMC, Dept Civil Engn, Ho Chi Minh City, Vietnam
关键词
Limit analysis; Meshless methods; Volumetric locking; Strain smoothing; Nodal integration; Second order cone programming; FREE GALERKIN METHOD; CONFORMING NODAL INTEGRATION; FINITE-ELEMENT-METHOD; FORMULATION; OPTIMIZATION; COMPUTATION; PLATES; LOADS;
D O I
10.1016/j.compstruc.2012.03.012
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An element free Galerkin (EFG) based formulation for limit analysis of rigid-perfectly plastic plane strain problems is presented. In the paper it is demonstrated that volumetric locking and instability problems can be avoided by using a stabilized conforming nodal integration scheme. Furthermore, the stabilized EFG method described allows stable and accurate solutions to be obtained with minimal computational effort. The discrete kinematic formulation is cast in the form of a second-order cone problem, allowing efficient interior-point solvers to be used to obtain solutions. Finally, the performance of the stabilized EFG method is illustrated by considering several numerical examples. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 8
页数:8
相关论文
共 47 条
  • [11] Chen JS, 2000, INT J NUMER METH ENG, V47, P1303, DOI 10.1002/(SICI)1097-0207(20000310)47:7<1303::AID-NME826>3.0.CO
  • [12] 2-5
  • [13] Lower-bound limit analysis by using the EFG method and non-linear programming
    Chen, Shenshen
    Liu, Yinghua
    Cen, Zhangzhi
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 74 (03) : 391 - 415
  • [14] Christiansen E, 1999, INT J NUMER METH ENG, V46, P1185, DOI 10.1002/(SICI)1097-0207(19991120)46:8<1185::AID-NME743>3.0.CO
  • [15] 2-N
  • [16] Christiansen E, 2001, INT J NUMER METH ENG, V50, P1331, DOI 10.1002/1097-0207(20010228)50:6<1331::AID-NME46>3.0.CO
  • [17] 2-S
  • [18] Christiansen E, 1996, HDB NUMERICAL ANAL
  • [19] Mesh adaptive computation of upper and lower bounds in limit analysis
    Ciria, H.
    Peraire, J.
    Bonet, J.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 75 (08) : 899 - 944
  • [20] A non-linear programming method approach for upper bound limit analysis
    da Silva, M. Vicente
    Antao, A. N.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2007, 72 (10) : 1192 - 1218