EXISTENCE OF THREE WEAK SOLUTIONS FOR KIRCHHOFF-TYPE PROBLEMS WITH VARIABLE EXPONENT AND NONHOMOGENEOUS NEUMANN CONDITIONS

被引:3
作者
Heidarkhani, S. [1 ]
De Araujo, A. L. A. [2 ]
Afrouzi, G. A. [3 ]
Moradi, S. [3 ]
机构
[1] Razi Univ, Fac Sci, Dept Math, Kermanshah 67149, Iran
[2] Univ Fed Vicosa, Dept Matemat, BR-36570000 Vicosa, MG, Brazil
[3] Univ Mazandaran, Fac Math Sci, Dept Math, Babolsar, Iran
来源
FIXED POINT THEORY | 2020年 / 21卷 / 02期
关键词
Variable exponent Sobolev spaces; p(x)-Kirchhoff-type problems; three weak solutions; variational methods; MULTIPLE SOLUTIONS; ELLIPTIC PROBLEMS; EQUATIONS; SPACES; FUNCTIONALS; (P(X);
D O I
10.24193/fpt-ro.2020.2.38
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the existence of at least three weak solutions for a class of differential equations with p(x)-Kirchhoff-type and subject to perturbations of nonhomogeneous Neumann conditions. Our technical approach is based on variational methods. Some applications and examples illustrate the obtained results.
引用
收藏
页码:525 / 548
页数:24
相关论文
共 57 条
  • [1] Afrouzi G. A., 2014, ELECT J DIFFERENTIAL, V134, P1
  • [2] [Anonymous], 1978, N HOLLAND MATH STUD
  • [3] Antontsev S. N., 2006, Ann. Univ. Ferrara Sez. VII Sci. Mat, V52, P19, DOI [DOI 10.1007/S11565-006-0002-9, 10.1007/s11565-006-0002-9]
  • [4] A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions
    Antontsev, SN
    Shmarev, SI
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 60 (03) : 515 - 545
  • [5] Blow up at infinity of solutions of polyharmonic Kirchhoff systems
    Autuori, G.
    Colasuonno, F.
    Pucci, P.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2012, 57 (2-4) : 379 - 395
  • [6] On the existence of stationary solutions for higher-order p-Kirchhoff problems
    Autuori, Giuseppina
    Colasuonno, Francesca
    Pucci, Patrizia
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (05)
  • [7] LIFESPAN ESTIMATES FOR SOLUTIONS OF POLYHARMONIC KIRCHHOFF SYSTEMS
    Autuori, Giuseppina
    Colasuonno, Francesca
    Pucci, Patrizia
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (02)
  • [8] Averna D, 2005, MATEMATICHE, V60, P81
  • [9] Bisci GM, 2016, ENCYCLOP MATH APPL, V162
  • [10] Applications of local linking to nonlocal Neumann problems
    Bisci, Giovanni Molica
    Radulescu, Vicentiu D.
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2015, 17 (01)