Identification of fractional-order systems via a switching differential evolution subject to noise perturbations

被引:21
作者
Zhu, Wu [1 ]
Fang, Jian-an [1 ]
Tang, Yang [2 ,3 ,4 ]
Zhang, Wenbing [5 ]
Xu, Yulong [1 ]
机构
[1] Donghua Univ, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China
[2] Humboldt Univ, Inst Phys, D-12489 Berlin, Germany
[3] Potsdam Inst Climate Impact Res, D-14415 Potsdam, Germany
[4] Harbin Inst Technol, Res Inst Intelligent Control & Syst, Harbin 150006, Peoples R China
[5] Hong Kong Polytech Univ, Inst Text & Clothing, Hong Kong, Hong Kong, Peoples R China
基金
中国博士后科学基金;
关键词
Fractional-order chaotic systems; Differential evolution; Population dynamics; System identification; PARAMETER-IDENTIFICATION; CHAOS; SYNCHRONIZATION;
D O I
10.1016/j.physleta.2012.09.042
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this Letter, a differential evolution variant, called switching DE (SDE), has been employed to estimate the orders and parameters in incommensurate fractional-order chaotic systems. The proposed algorithm includes a switching population utilization strategy, where the population size is adjusted dynamically based on the solution-searching status. Thus, this adaptive control method realizes the identification of fractional-order Lorenz, Lu and Chen systems in both deterministic and stochastic environments, respectively. Numerical simulations are provided, where comparisons are made with five other State-of-the-Art evolutionary algorithms (EAs) to verify the effectiveness of the proposed method. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:3113 / 3120
页数:8
相关论文
共 36 条
[1]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[2]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[3]   Chaotic behavior in noninteger-order cellular neural networks [J].
Arena, P ;
Fortuna, L ;
Porto, D .
PHYSICAL REVIEW E, 2000, 61 (01) :776-781
[4]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[5]   Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems [J].
Brest, Janez ;
Greiner, Saso ;
Boskovic, Borko ;
Mernik, Marjan ;
Zumer, Vijern .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) :646-657
[6]   Differential Evolution: A Survey of the State-of-the-Art [J].
Das, Swagatam ;
Suganthan, Ponnuthurai Nagaratnam .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2011, 15 (01) :4-31
[7]   A predictor-corrector approach for the numerical solution of fractional differential equations [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :3-22
[8]   Chaos and regularity in semiconductor microcavities [J].
Eleuch, Hichem ;
Prasad, Awadhesh .
PHYSICS LETTERS A, 2012, 376 (26-27) :1970-1977
[9]   Global and local real-coded genetic algorithms based on parent-centric crossover operators [J].
Garcia-Martinez, C. ;
Lozano, M. ;
Herrera, F. ;
Molina, D. ;
Sanchez, A. M. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2008, 185 (03) :1088-1113
[10]   Chaotic dynamics of the fractional Lorenz system [J].
Grigorenko, I ;
Grigorenko, E .
PHYSICAL REVIEW LETTERS, 2003, 91 (03)