The normalized incidence energy of a graph

被引:12
作者
Cheng, Bo [1 ]
Liu, Bolian [2 ]
机构
[1] Guangdong Univ Foreign Studies, Sch Informat, Dept Math & Stat, Guangzhou, Guangdong, Peoples R China
[2] S China Normal Univ, Dept Math, Guangzhou, Guangdong, Peoples R China
关键词
Energy; Adjacency matrix; Normalized incidence matrix; GENERAL RANDIC INDEX; BIPARTITE GRAPHS;
D O I
10.1016/j.laa.2013.01.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The energy of a graph G is the sum of the singular values of its adjacency matrix. It is a graph invariant used in mathematical chemistry. The normalized incidence energy of the graph G, denoted by NIE(G), is defined as the sum of the singular values of its normalized incidence matrix. We find some upper and lower bounds and determine the Coulson integral formula for NIE(G). Based on the integral formula, we give a way to compare the normalized incidence energies. Moreover we show a relation between normalized incidence energy and Randic energy. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:4510 / 4519
页数:10
相关论文
共 22 条
[1]  
[Anonymous], 2009, Analysis of Complex Networks: From Biology to Linguistics, DOI DOI 10.1002/9783527627981.CH7
[2]  
Bollobás B, 1998, ARS COMBINATORIA, V50, P225
[3]  
Bozkurt SB, 2010, MATCH-COMMUN MATH CO, V64, P239
[4]  
Brualdi R. A., 2006, AIM WORKSH SPECTR FA
[5]   On the normalized Laplacian energy and general Randic index R_1 of graphs [J].
Cavers, Michael ;
Fallat, Shaun ;
Kirkland, Steve .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2010, 433 (01) :172-190
[6]  
Chung F., 1992, Spectral Graph Theory
[7]  
Consonni V, 2008, MATCH-COMMUN MATH CO, V60, P3
[8]  
Coulson CA, 1940, P CAMB PHILOS SOC, V36, P201
[9]  
Cvetkovi DM., 1980, Spectra of Graphs: Theory and Applications
[10]  
Gutman I., 1978, Ber. Math. Statist. Sekt. Forschungsz Graz., V103, DOI [DOI 10.1016/J.LAA.2004.02.038, DOI 10.1088/1742-5468/2008/10/P10008]