A class of invariant unitary operators

被引:18
作者
Báez-Duarte, L [1 ]
机构
[1] Inst Venezolano Invest Cient, Dept Matemat, Caracas 1020A, Venezuela
关键词
unitary operators; Riemann zeta function; Riemann hypothesis; Beurling-Nyman theorem; Hardy operator;
D O I
10.1006/aima.1998.1801
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H =L-2((0, infinity), dx), and K(lambda)f(x) = f(lambda x), for lambda>0, f is an element of H. An invariant operator, on H is one commuting with all the K-lambda. A skew root is a self-adjoint, unitary operator on H satisfying T-2 = I, and TKlambda = K-lambda*T, for all lambda > 0. A generator g is an element of H such that the smallest, closed subspace containing {K-lambda g}(lambda>0) is equal to H. We show that for any skew root T and any real-valued generator g there is a unique, invariant, unitary operator W satisfying Wg = Tg. It turns out that W-1 = TWT. This construction is related to an approximation problem in H arising from a theorem due to A. Beurling (1955, Proc. Nar. Acad. Sci. U.S.A. 41, 312-314) and B. Nyman (1950, "On Some Groups and Semigroups of Translations," Thesis, Uppsala) which shows the Riemann hypothesis is equivalent to a closure problem in Hilbert space. (C) 1999 Academic Press.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 10 条
[1]   ON BEURLING REAL VARIABLE REFORMULATION OF THE RIEMANN-HYPOTHESIS [J].
BAEZDUARTE, L .
ADVANCES IN MATHEMATICS, 1993, 101 (01) :10-30
[3]  
DAVENPORT H, 1937, Q J MATH, V8, P8
[4]  
Davenport H., 1937, Q J MATH, V8, P313, DOI [10.1093/qmath/os-8.1.313, DOI 10.1093/QMATH/OS-8.1.313]
[5]  
DONOGHUE P, 1969, PURE APPL MATH, V32
[6]   SOME SIMPLE UNITARY TRANSFORMATIONS [J].
DUFFIN, RJ .
ANNALS OF MATHEMATICS, 1952, 55 (03) :531-537
[7]  
Nyman B., 1950, THESIS UPPSALA
[8]  
ODLYZKO AM, 1985, J REINE ANGEW MATH, V357, P138
[9]  
RUDIN W, 1962, TRACTS PURE APPL MAT, V12
[10]  
TICHMARSH EC, 1951, THEORY RIEMANN ZETA