Excess β-catenin promotes accumulation of transcriptionally active p53

被引:200
作者
Damalas, A [1 ]
Ben-Ze'ev, A [1 ]
Simcha, I [1 ]
Shtutman, N [1 ]
Leal, JFN [1 ]
Zhurinsky, J [1 ]
Geiger, B [1 ]
Oren, M [1 ]
机构
[1] Weizmann Inst Sci, Dept Mol Cell Biol, IL-76100 Rehovot, Israel
关键词
carcinogenesis; beta-catenin; colorectal cancer; Mdm2; p53;
D O I
10.1093/emboj/18.11.3054
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
beta-catenin is a multifunctional protein, acting both as a structural component of the cell adhesion machinery and as a transducer of extracellular signals, Deregulated beta-catenin protein expression, due to mutations in the beta-catenin gene itself or in its upstream regulator, the adenomatous polyposis coli (APC) gene, is prevalent in colorectal cancer and in several other tumor types, and attests to the potential oncogenic activity of this protein, Increased expression of beta-catenin is an early event in colorectal carcinogenesis, and is usually followed by a later mutational inactivation of the p53 tumor suppressor, To examine whether these two key steps in carcinogenesis are interrelated, we studied the effect of excess beta-catenin on p53, We report here that overexpression of beta-catenin results in accumulation of p53, apparently through interference with its proteolytic degradation, This effect involves both Mdm2-dependent and -independent p53 degradation pathways, and is accompanied by augmented transcriptional activity of p53 in the affected cells, Increased p53 activity may provide a safeguard against oncogenic deregulation of beta-catenin, and thus impose a pressure for mutational inactivation of p53 during the later stages of tumor progression.
引用
收藏
页码:3054 / 3063
页数:10
相关论文
共 85 条
[1]   beta-catenin is a target for the ubiquitin-proteasome pathway [J].
Aberle, H ;
Bauer, A ;
Stappert, J ;
Kispert, A ;
Kemler, R .
EMBO JOURNAL, 1997, 16 (13) :3797-3804
[2]   The p53 network [J].
Agarwal, ML ;
Taylor, WR ;
Chernov, MV ;
Chernova, OB ;
Stark, GR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (01) :1-4
[3]   Regulation of armadillo by a Drosophila APC inhibits neuronal apoptosis during retinal development [J].
Ahmed, Y ;
Hayashi, S ;
Levine, A ;
Wieschaus, E .
CELL, 1998, 93 (07) :1171-1182
[4]  
Almog Nava, 1998, Biochimica et Biophysica Acta, V1378, pR43
[5]  
BEDI A, 1995, CANCER RES, V55, P1811
[6]   Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK3β [J].
Behrens, J ;
Jerchow, BA ;
Würtele, M ;
Grimm, J ;
Asbrand, C ;
Wirtz, R ;
Kühl, M ;
Wedlich, D ;
Birchmeier, W .
SCIENCE, 1998, 280 (5363) :596-599
[7]   Functional interaction of beta-catenin with the transcription factor LEF-1 [J].
Behrens, J ;
vonKries, JP ;
Kuhl, M ;
Bruhn, L ;
Wedlich, D ;
Grosschedl, R ;
Birchmeier, W .
NATURE, 1996, 382 (6592) :638-642
[8]   Differential molecular interactions of β-catenin and plakoglobin in adhesion, signaling and cancer [J].
Ben-Ze'ev, A ;
Geiger, B .
CURRENT OPINION IN CELL BIOLOGY, 1998, 10 (05) :629-639
[9]  
BENNETT WP, 1995, CANCER DETECT PREV, V19, P503
[10]   Design of a synthetic Mdm2-binding mini protein that activates the p53 response in vivo [J].
Bottger, A ;
Bottger, V ;
Sparks, A ;
Liu, WL ;
Howard, SF ;
Lane, DP .
CURRENT BIOLOGY, 1997, 7 (11) :860-869