Weight and nonlinearity of Boolean functions

被引:3
作者
Ciungu, Lavinia Corina [1 ]
机构
[1] Univ Cent Oklahoma, Edmond, OK 73013 USA
关键词
Hamming weight; nonlinearity; balanced functions; affine equivalence; rotation symmetric;
D O I
10.3906/mat-1104-21
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we analyze the weight and the nonlinearity of various types of Boolean functions. We give some general results related to rotation symmetric Boolean functions, and in particular, we prove partially a conjecture stated by Cusick and Stanica in [3].
引用
收藏
页码:520 / 529
页数:10
相关论文
共 6 条
[1]   Normal extensions of bent functions [J].
Carlet, C ;
Dobbertin, H ;
Leander, G .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (11) :2880-2885
[2]   Fast evaluation, weights and nonlinearity of rotation-symmetric functions [J].
Cusick, TW ;
Stanica, P .
DISCRETE MATHEMATICS, 2002, 258 (1-3) :289-301
[3]  
Cusick TW., 2009, Cryptographic Boolean Functions and Applications
[4]   On the weight and nonlinearity of homogeneous rotation symmetric Boolean functions of degree 2 [J].
Kim, Hyeonjin ;
Park, Sung-Mo ;
Hahn, Sang Geun .
DISCRETE APPLIED MATHEMATICS, 2009, 157 (02) :428-432
[5]  
Pieprzyk J., 1999, Journal of Universal Computer Science, V5, P20
[6]  
Seberry J., 1993, EUROCRYPT