On the energy of a unit vector field

被引:114
作者
Wood, CM [1 ]
机构
[1] UNIV YORK,DEPT MATH,YORK YO1 5DD,N YORKSHIRE,ENGLAND
关键词
Riemann manifolds; unit vector field; Sasaki metric; Hopf vector fields;
D O I
10.1023/A:1017976425512
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The energy of a unit vector field on a Riemannian manifold M is defined to be the energy of the mapping M --> T(1)M, where the unit tangent bundle T(1)M is equipped with the restriction of the Sasaki metric. The constrained variational problem is studied, where variations are confined to unit vector fields, and the first and second variational formulas are derived. The Hopf vector fields on odd-dimensional spheres are shown to be critical points, which are unstable for M = S-5, S-7,..., and an estimate on the index is obtained.
引用
收藏
页码:319 / 330
页数:12
相关论文
共 11 条
[1]  
Eells J., 1983, CBMS REGIONAL C SERI, V50
[2]   ON THE VOLUME OF A UNIT VECTOR FIELD ON THE 3-SPHERE [J].
GLUCK, H ;
ZILLER, W .
COMMENTARII MATHEMATICI HELVETICI, 1986, 61 (02) :177-192
[3]  
GROMOLL D, 1968, LECTURES NOTES MATH, V55
[4]  
Ishihara T., 1979, J. Math. Tokushima Univ., V13, P23
[5]   VOLUMES OF FLOWS [J].
JOHNSON, DL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 104 (03) :923-931
[6]  
NOUHAUD O, 1977, CR ACAD SCI A MATH, V284, P815
[7]  
SMITH RT, 1975, P AM MATH SOC, V47, P229
[8]  
WOOD CM, 1987, P LOND MATH SOC, V54, P544
[9]   A CLASS OF HARMONIC ALMOST-PRODUCT STRUCTURES [J].
WOOD, CM .
JOURNAL OF GEOMETRY AND PHYSICS, 1994, 14 (01) :25-42
[10]  
WOOD CM, 1995, COMPOS MATH, V99, P183