Ge oxide scavenging and gate stack nitridation for strained Si0.7Ge0.3 pFinFETs enabling 35% higher mobility than Si

被引:10
作者
Arimura, H. [1 ]
Wostyn, K. [1 ]
Ragnarsson, L. -A. [1 ]
Capogreco, E. [1 ]
Chasin, A. [1 ]
Conard, T. [1 ]
Brus, S. [1 ]
Favia, P. [1 ]
Franco, J. [1 ]
Mitard, J. [1 ]
Demuynck, S. [1 ]
Horiguchi, N. [1 ]
机构
[1] IMEC, Leuven, Belgium
来源
2019 IEEE INTERNATIONAL ELECTRON DEVICES MEETING (IEDM) | 2019年
关键词
D O I
10.1109/iedm19573.2019.8993467
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We demonstrate multiple ways to reduce the D-IT of Si-cap-free low-Ge-content (25-30%) SiGe gate stack. The D-IT is reduced by i) Ge oxide scavenging via Ge condensation or by the work function metal (WFM), ii) nitridation of gate dielectrics and iii) optimized high-pressure anneal (HPA). A moderate nitridation of the interface layer (IL) is beneficial in EOT and D-IT reduction, while nitridation of the HfO2 dramatically reduces D-IT by negating an ALD TiN-induced D-IT increase. The optimized gate stack is evaluated in 8-nm-wide strained Si0.7Ge0.3 pFinFETs integrated on 300 mm Si wafers, for which a 35% improvement in high-field mobility is demonstrated as compared to Si pFinFET counterparts.
引用
收藏
页数:4
相关论文
共 50 条
[31]   A high rectification efficiency Dual Fin Si0.7Ge0.3/Si/Si0.7Ge0.3 quantum well channel structure FinFET for 2.45 GHz micropower microwave wireless energy harvesting [J].
Ren, Jiazhi ;
Song, Jianjun ;
Zhang, Yuchen .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2025, 40 (03)
[32]   Instability of incorporated nitrogen in HfO2 films grown on strained Si0.7Ge0.3 layers [J].
Chung, K. B. ;
Lucovsky, G. ;
Lee, W. J. ;
Cho, M. -H. ;
Jeon, Hyeongtag .
APPLIED PHYSICS LETTERS, 2009, 94 (04)
[33]   Quantized conductance in a Si/Si0.7Ge0.3 split-gate device and impurity-related magnetotransport phenomena [J].
Tobben, D ;
Wharam, DA ;
Abstreiter, G ;
Kotthaus, JP ;
Schaffler, F .
SOLID-STATE ELECTRONICS, 1996, 40 (1-8) :405-408
[34]   80 nm gate-length Si/Si0.7Ge0.3 n-MODFET with 194 GHz fmax [J].
Koester, SJ ;
Saenger, KL ;
Chu, JO ;
Ouyang, QC ;
Ott, JA ;
Rooks, MJ ;
Canaperi, DF ;
Tornello, JA ;
Jahnes, C ;
Steen, SE .
ELECTRONICS LETTERS, 2003, 39 (23) :1684-1685
[35]   Growth of polycrystalline Si0.7Ge0.3 on various substrates for thermoelectric applications [J].
Sison, Gavin ;
Chiang, Ping-ting ;
Lan, Chung-wen .
JOURNAL OF CRYSTAL GROWTH, 2022, 585
[36]   Recrystallization, redistribution, and electrical activation of strained-silicon/Si0.7Ge0.3 heterostructures with implanted arsenic [J].
Sugii, N ;
Irieda, S ;
Morioka, J ;
Inada, T .
JOURNAL OF APPLIED PHYSICS, 2004, 96 (01) :261-268
[37]   Morphology, defect spectrum, and photoluminescence of thin Si0.7Ge0.3 layers [J].
Ligatchev, V ;
Wong, TKS .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) :H63-H67
[38]   NH3 PDA Temperature-Impact on Low-Frequency Noise Behavior of Si0.7Ge0.3 pFinFETs [J].
Xie, Duan ;
Simoen, Eddy ;
Arimura, Hiroaki ;
Capogreco, Elena ;
Mitard, Jerome ;
Horiguchi, Naoto .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (12) :6985-6990
[39]   High room-temperature hole mobility in Ge0.7Si0.3/Ge/Ge0.7Si0.3 modulation-doped heterostructures [J].
Madhavi, S ;
Venkataraman, V ;
Xie, YH .
JOURNAL OF APPLIED PHYSICS, 2001, 89 (04) :2497-2499
[40]   Energy relaxation of two-dimensional carriers in strained Ge/Si0.4Ge0.6 and Si/Si0.7Ge0.3 quantum wells: Evidence for two-dimensional acoustic phonons [J].
Song, SH ;
Pan, W ;
Tsui, DC ;
Xie, YH ;
Monroe, D .
APPLIED PHYSICS LETTERS, 1997, 70 (25) :3422-3424