A New Construction of Multisender Authentication Codes from Symplectic Geometry over Finite Fields

被引:0
|
作者
Chen Shang-di [1 ]
Yang Chun-li [1 ]
机构
[1] Civil Aviat Univ China, Coll Sci, Tianjin 300300, Peoples R China
关键词
symplectic geometry; multisender authentication codes; finite fields; ARBITRATION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Multisender authentication codes allow a group of senders to construct an authenticated message for a receiver such that the receiver can verify authenticity of the received message. In this paper, we give the model of multisender authentication codes and the calculation formulas on probability of success in attacks by malicious groups of senders. A construction of multisender authentication codes from symplectic geometry over finite fields is given, and the parameters and the probabilities of deceptions are also calculated.
引用
收藏
页码:353 / 366
页数:14
相关论文
共 50 条
  • [21] Two Constructions of Optimal Cartesian Authentication Codes from Unitary Geometry over Finite Fields
    Chen, Shang-di
    Zhao, Da-wei
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2013, 29 (04): : 829 - 836
  • [22] A New Construction of Cartesian Authentication Code from Vector Space over Finite Fields
    Wang, Hong-Li
    2010 SECOND ETP/IITA WORLD CONGRESS IN APPLIED COMPUTING, COMPUTER SCIENCE, AND COMPUTER ENGINEERING, 2010, : 202 - 205
  • [23] Construction of compressed sensing matrices based on affine symplectic space over finite fields
    Wang Gang
    Niu Minyao
    Fu Fangwei
    The Journal of China Universities of Posts and Telecommunications, 2018, 25 (06) : 74 - 80
  • [24] Construction of compressed sensing matrices based on affine symplectic space over finite fields
    Gang W.
    Minyao N.
    Fangwei F.
    Journal of China Universities of Posts and Telecommunications, 2018, 25 (06): : 74 - 80
  • [25] New key pre-distribution scheme using symplectic geometry over finite fields for wireless sensor networks
    Chen Shangdi
    Wen Jiejing
    The Journal of China Universities of Posts and Telecommunications, 2017, (05) : 16 - 22
  • [26] Dihedral Group Codes Over Finite Fields
    Fan, Yun
    Lin, Liren
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2021, 67 (08) : 5016 - 5025
  • [27] An Introduction to Robust Codes over Finite Fields
    Engelberg, Shlomo
    Keren, Osnat
    SIAM REVIEW, 2013, 55 (04) : 751 - 763
  • [28] New Construction of Low-Density Parity-Check Codes Based on Vector Space Over Finite Fields
    Liu, Xuemei
    Jia, Lihua
    IEEE ACCESS, 2020, 8 : 203538 - 203542
  • [29] Quantum codes from a new construction of self-orthogonal algebraic geometry codes
    Hernando, F.
    McGuire, G.
    Monserrat, F.
    Moyano-Fernandez, J. J.
    QUANTUM INFORMATION PROCESSING, 2020, 19 (04)
  • [30] On the geometry of numerical ranges over finite fields
    Camenga, Kristin A.
    Collins, Brandon
    Hoefer, Gage
    Quezada, Jonny
    Rault, Patrick X.
    Willson, James
    Yates, Rebekah B. Johnson
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2021, 628 : 182 - 201