Plastic hinge integration methods for force-based beam-column elements

被引:454
作者
Scott, MH [1 ]
Fenves, GL
机构
[1] Oregon State Univ, Dept Civil Construct & Environm Engn, Corvallis, OR 97331 USA
[2] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA
关键词
beam columns; finite elements; earthquake engineering; Nonlinear analysis; plastic hinges; simulation models;
D O I
10.1061/(ASCE)0733-9445(2006)132:2(244)
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A new plastic hinge integration method overcomes the problems with nonobjective response caused by strain-softening behavior in force-based beam-column finite elements. The integration method uses the common concept of a plastic hinge length in a numerically consistent manner. The method, derived from the Gauss-Radau quadrature rule, integrates deformations over specified plastic hinge lengths at the ends of the beam-column element, and it has the desirable property that it reduces to the exact solution for linear problems. Numerical examples show the effect of plastic hinge integration on the response of force-based beam-column elements for both strain-hardening and strain-softening section behavior in the plastic hinge regions. The incorporation of a plastic hinge length in the element integration method ensures objective element and section response, which is important for strain-softening behavior in reinforced concrete structures. Plastic rotations are defined in a consistent manner and clearly related to deformations in the plastic hinges.
引用
收藏
页码:244 / 252
页数:9
相关论文
共 22 条
[11]  
HILMY SI, 1985, NUMETA 85 NUMERICAL, V1, P305
[12]  
Hughes T. J. R., 2012, The finite element method: linear static and dynamic finite element analysis
[13]  
Kent D.C., 1971, J STRUCT DIV, V97, P1969, DOI [10.1061/JSDEAG.0002957, DOI 10.1061/JSDEAG.0002957]
[14]   THEORETICAL STRESS-STRAIN MODEL FOR CONFINED CONCRETE [J].
MANDER, JB ;
PRIESTLEY, MJN ;
PARK, R .
JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 1988, 114 (08) :1804-1826
[15]  
McKenna F., 2007, OPEN SYSTEM EARTHQUA
[16]   Evaluation of nonlinear frame finite-element models [J].
Neuenhofer, A ;
Filippou, FC .
JOURNAL OF STRUCTURAL ENGINEERING-ASCE, 1997, 123 (07) :958-966
[17]   3D BEAM-COLUMN ELEMENT WITH GENERALIZED PLASTIC HINGES [J].
POWELL, GH ;
CHEN, PFS .
JOURNAL OF ENGINEERING MECHANICS-ASCE, 1986, 112 (07) :627-641
[18]  
Simo JC., 1998, COMPUTATIONAL INELAS
[19]   MIXED FORMULATION OF NONLINEAR BEAM FINITE-ELEMENT [J].
SPACONE, E ;
CIAMPI, V ;
FILIPPOU, FC .
COMPUTERS & STRUCTURES, 1996, 58 (01) :71-83
[20]  
STOER J, 1993, INTRO NUMERICAL ANAL