RATIONAL CURVES OF DEGREE 11 ON A GENERAL QUINTIC 3-FOLD

被引:13
作者
Cotterill, Ethan [1 ]
机构
[1] Univ Nantes, Lab Math Jean Leray, UMR 6629, CNRS, F-44322 Nantes 3, France
关键词
CASTELNUOVO; VARIETIES;
D O I
10.1093/qmath/har001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that the incidence scheme of rational curves of degree 11 in quintic 3-folds is irreducible. Irreducibility implies a strong form of the Clemens conjecture in degree 11; namely, on a general quintic F in P-4, there are only finitely many smooth rational curves of degree 11, and each curve C is embedded in F with normal bundle O(-1) circle plus O(-1). Moreover, in degree 11, there are no singular, reduced and irreducible rational curves, nor any reduced, reducible and connected curves with rational components on F.
引用
收藏
页码:539 / 568
页数:30
相关论文
共 28 条
[21]  
Ionescu P., 1984, SPRINGER LECT NOTES, V1056, P142
[22]  
Johnsen T, 1996, COMMUN ALGEBRA, V24, P2721
[23]  
KATZ S, 1986, COMPOS MATH, V60, P151
[24]  
Migliore J., 1998, INTRO LIAISON DEFICI
[25]  
NAGEL U, 1991, MATEMATICHE, V46, P547
[26]   CONNECTION OF ALGEBRAIC VARIETIES 1 [J].
PESKINE, C ;
SZPIRO, L .
INVENTIONES MATHEMATICAE, 1974, 26 (04) :271-302
[27]  
RAMELLA L, 1990, CR ACAD SCI I-MATH, V311, P181
[28]  
VERDIER JL, 1983, LECT NOTES PHYS, V180, P136