One-Step Processing of Soft Electrolyte/Metallic Lithium Interface for High-Performance Solid-State Lithium Batteries

被引:17
|
作者
Zhang, Jiaxu [1 ,2 ]
Li, Jun [1 ]
Zhai, Huiyu [1 ,2 ]
Tan, Gangjian [1 ]
Tang, Xinfeng [1 ]
机构
[1] Wuhan Univ Technol, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
[2] Wuhan Univ Technol, Int Sch Mat Sci & Engn, Wuhan 430070, Peoples R China
来源
ACS APPLIED ENERGY MATERIALS | 2020年 / 3卷 / 07期
基金
中国国家自然科学基金;
关键词
lithium metal batteries; garnet-type electrolyte; electrochemical performance; stability; solid state; IONIC-CONDUCTIVITY; LI; RESISTANCE; CHEMISTRY; AL; MICROSTRUCTURE; DEPOSITION; MECHANISM; ORIGIN; ANODES;
D O I
10.1021/acsaem.0c01470
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cubic garnet-type Li7La3Zr2O12 (LLZO) is a remarkable Li-ion electrolyte for solid-state lithium metal batteries due to its high ion conductivity and perfect electrochemical stability against lithium metal anode. However, the application of LLZO is hindered by the poor interfacial contact between garnet and lithium metal. Herein, LLZO powder was sandwiched by graphite foils and densified by a one-step hot press process. After peeling off the graphite foils from the LLZO pellet, the residual thin layer of graphite (similar to 0.15 mu m) can be easily lithiated in contact with lithium metal. This buffer layer not only greatly improves the wettability and interfacial contact between LLZO and lithium metal but also significantly relieves the volume expansion of lithium metal during cycling. The assembled symmetric cell cycled over 1500 h at 0.1 mA cm(-2) with excellent stability. Moreover, the hybrid-state full cell also shows good electrochemical performance.
引用
收藏
页码:6139 / 6145
页数:7
相关论文
共 50 条
  • [41] High-Performance Solid Composite Polymer Electrolyte for all Solid-State Lithium Battery Through Facile Microstructure Regulation
    Yang, Jingjing
    Wang, Xun
    Zhang, Gai
    Ma, Aijie
    Chen, Weixing
    Shao, Le
    Shen, Chao
    Xie, Keyu
    FRONTIERS IN CHEMISTRY, 2019, 7
  • [42] Regulating Interfacial Chemistry to Boost Ionic Transport and Interface Stability of Composite Solid-State Electrolytes for High-Performance Solid-State Lithium Metal Batteries
    Wen, Sifan
    Sun, Zhefei
    Wu, Xiaoyu
    Zhou, Shenghui
    Yin, Quanzhi
    Chen, Haoyu
    Pan, Jianhai
    Zhang, Zhiwen
    Zhuang, Zilong
    Wan, Jiayu
    Zhou, Weidong
    Peng, Dong-Liang
    Zhang, Qiaobao
    ADVANCED FUNCTIONAL MATERIALS, 2025,
  • [43] Hybrid Crosslinked Solid Polymer Electrolyte via In-Situ Solidification Enables High-Performance Solid-State Lithium Metal Batteries
    Mu, Kexin
    Wang, Dai
    Dong, Weiliang
    Liu, Qiang
    Song, Zhennuo
    Xu, Weijian
    Yao, Pingping
    Chen, Yin'an
    Yang, Bo
    Li, Cuihua
    Tian, Lei
    Zhu, Caizhen
    Xu, Jian
    ADVANCED MATERIALS, 2023, 35 (47)
  • [44] Uniform Densification of Garnet Electrolyte for Solid-State Lithium Batteries
    Guo, Zhihao
    Li, Qihou
    Li, Xinhai
    Wang, Zhixing
    Guo, Huajun
    Peng, Wenjie
    Li, Guangchao
    Yan, Guochun
    Wang, Jiexi
    SMALL METHODS, 2023, 7 (09)
  • [45] In Situ Formed Gel Polymer Electrolytes Enable Stable Solid Electrolyte Interface for High-Performance Lithium Metal Batteries
    Hao, Qingfei
    Yan, Jiawei
    Gao, Ying
    Chen, Fei
    Chen, Xiangtao
    Qi, Yang
    Li, Na
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (34) : 44689 - 44696
  • [46] Preparation and characterization of hybrid solid-state electrolytes for high performance lithium-ion batteries
    Ren, He
    Zhang, Yifan
    Chen, Yan
    Yang, Yubo
    Yang, Chenfei
    Miao, Xiaowei
    Li, Weili
    Yang, Gang
    SOLID STATE SCIENCES, 2024, 148
  • [47] Solid-State Electrolyte for Lithium-Air Batteries: A Review
    Zhu, Qiancheng
    Ma, Jie
    Li, Shujian
    Mao, Deyu
    POLYMERS, 2023, 15 (11)
  • [48] Research Progress of Interface Optimization Strategies for Solid-State Lithium Batteries
    Zhao, Yongzhi
    Chen, Chenyang
    Liu, Wenyi
    Hu, Weifei
    Liu, Jinping
    ACTA PHYSICO-CHIMICA SINICA, 2023, 39 (08)
  • [49] Two-Dimensional Fluorinated Graphene Reinforced Solid Polymer Electrolytes for High-Performance Solid-State Lithium Batteries
    Zhai, Pengbo
    Yang, Zhilin
    Wei, Yi
    Guo, Xiangxin
    Gong, Yongji
    ADVANCED ENERGY MATERIALS, 2022, 12 (42)
  • [50] Investigation of polysulfone film on high-performance anode with stabilized electrolyte/electrode interface for lithium batteries
    Ma, Yuyan
    Dong, Chen
    Yang, Qiuli
    Yin, Yuxin
    Bai, Xiaoping
    Zhen, Shuying
    Fan, Cheng
    Sun, Kening
    JOURNAL OF ENERGY CHEMISTRY, 2020, 42 : 49 - 55