Cospectrality of complete bipartite graphs

被引:15
作者
Oboudi, Mohammad Reza [1 ,2 ]
机构
[1] Shiraz Univ, Dept Math, Coll Sci, Shiraz, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
spectra of graphs; measures on spectra of graphs; cospectrality of graphs; the adjacency matrix of a graph; complete bipartite graphs; SPECTRA;
D O I
10.1080/03081087.2016.1162133
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Richard Brualdi proposed in [Research problems from the Aveiro workshop on graph spectra, Linear Algebra Appl. 2007; 423: 172-181] the following problem: (Problem AWGS. 4) Let G(n) and G'(n) be two non-isomorphic graphs on n vertices with spectra. lambda(1) >= lambda(2) >= ... >= lambda(n) and lambda'(1) >= lambda'(2) >= lambda'(n,) respectively. Define the distance between the spectra of G(n) and G'(n) as.(G(n), G'(n)) = n i= 1 (.i -. i) 2.. or use n i= 1 |.i -. i |... Define the cospectrality of Gn by cs(G(n)) = min{.(Gn, G'(n)) : G'(n) not isomorphic to G(n)}. Let csn = max{cs(G(n)) : Gn a graph on n vertices}. Problem A Investigate cs(G(n)) for special classes of graphs. Problem B Find a good upper bound on csn. In this paper, we study ProblemAand determine the cospectrality of all complete bipartite graphs by the Euclidian distance. More precisely, we show that for all positive integers m and n there are some positive integers r, s and a non-negative integer t such that cs(Km, n) =.(Km, n, Kr, s+ tK1), where Km, n is the complete bipartite graph with parts of sizes m and n.
引用
收藏
页码:2491 / 2497
页数:7
相关论文
共 50 条
[41]   VERTEX-DISTINGUISHING IE-TOTAL COLORINGS OF COMPLETE BIPARTITE GRAPHS Km,n(m < n) [J].
Chen, Xiang'en ;
Gao, Yuping ;
Yao, Bing .
DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2013, 33 (02) :289-306
[42]   Weak saturation number of a complete bipartite graph * [J].
Xu, Tongtong ;
Wu, Baoyindureng .
APPLIED MATHEMATICS AND COMPUTATION, 2023, 455
[43]   Bipartite Unique Neighbour Expanders via Ramanujan Graphs [J].
Asherov, Ron ;
Dinur, Irit .
ENTROPY, 2024, 26 (04)
[44]   Periodicity of bipartite walk on biregular graphs with conditional spectra [J].
Chen, Qiuting .
PHYSICA SCRIPTA, 2024, 99 (10)
[45]   Decompositions of line graphs of complete graphs into paths and cycles [J].
Ganesamurthy, S. .
DISCRETE MATHEMATICS, 2023, 346 (01)
[46]   COUNTING LINKS IN COMPLETE GRAPHS [J].
Fleming, Thomas ;
Mellor, Blake .
OSAKA JOURNAL OF MATHEMATICS, 2009, 46 (01) :173-201
[47]   Balanced bipartite graphs may be completely star-factored [J].
Martin, N .
JOURNAL OF COMBINATORIAL DESIGNS, 1997, 5 (06) :407-415
[48]   Interlacing Families I: Bipartite Ramanujan Graphs of All Degrees [J].
Marcus, Adam ;
Spielman, Daniel A. ;
Srivastava, Nikhil .
2013 IEEE 54TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE (FOCS), 2013, :529-537
[49]   Interlacing families I: Bipartite Ramanujan graphs of all degrees [J].
Marcus, Adam W. ;
Spielman, Daniel A. ;
Srivastava, Nikhil .
ANNALS OF MATHEMATICS, 2015, 182 (01) :307-325
[50]   NONVANISHING OF BETTI NUMBERS OF EDGE IDEALS AND COMPLETE BIPARTITE SUBGRAPHS [J].
Kimura, Kyouko .
COMMUNICATIONS IN ALGEBRA, 2016, 44 (02) :710-730