Cospectrality of complete bipartite graphs

被引:15
作者
Oboudi, Mohammad Reza [1 ,2 ]
机构
[1] Shiraz Univ, Dept Math, Coll Sci, Shiraz, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
spectra of graphs; measures on spectra of graphs; cospectrality of graphs; the adjacency matrix of a graph; complete bipartite graphs; SPECTRA;
D O I
10.1080/03081087.2016.1162133
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Richard Brualdi proposed in [Research problems from the Aveiro workshop on graph spectra, Linear Algebra Appl. 2007; 423: 172-181] the following problem: (Problem AWGS. 4) Let G(n) and G'(n) be two non-isomorphic graphs on n vertices with spectra. lambda(1) >= lambda(2) >= ... >= lambda(n) and lambda'(1) >= lambda'(2) >= lambda'(n,) respectively. Define the distance between the spectra of G(n) and G'(n) as.(G(n), G'(n)) = n i= 1 (.i -. i) 2.. or use n i= 1 |.i -. i |... Define the cospectrality of Gn by cs(G(n)) = min{.(Gn, G'(n)) : G'(n) not isomorphic to G(n)}. Let csn = max{cs(G(n)) : Gn a graph on n vertices}. Problem A Investigate cs(G(n)) for special classes of graphs. Problem B Find a good upper bound on csn. In this paper, we study ProblemAand determine the cospectrality of all complete bipartite graphs by the Euclidian distance. More precisely, we show that for all positive integers m and n there are some positive integers r, s and a non-negative integer t such that cs(Km, n) =.(Km, n, Kr, s+ tK1), where Km, n is the complete bipartite graph with parts of sizes m and n.
引用
收藏
页码:2491 / 2497
页数:7
相关论文
共 50 条
[31]   Quasi-Stationary Distributions for the Voter Model on Complete Bipartite Graphs [J].
Ben-Ari, Iddo ;
Panzo, Hugo ;
Speegle, Philip ;
VandenBerg, R. Oliver .
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2021, 18 (01) :421-437
[32]   Normalized volumes of configurations related with root systems and complete bipartite graphs [J].
Ohsugi, H ;
Hibi, T .
DISCRETE MATHEMATICS, 2003, 268 (1-3) :217-242
[33]   Disjoint properly colored cycles in edge-colored complete bipartite graphs [J].
Yoshimoto, Kiyoshi .
DISCRETE MATHEMATICS, 2023, 346 (01)
[34]   Classification of some reflexible edge-transitive embeddings of complete bipartite graphs [J].
Kwak, Jin Ho ;
Kwon, Young Soo .
ARS MATHEMATICA CONTEMPORANEA, 2019, 16 (02) :563-583
[35]   The strong equitable vertex 2-arboricity of complete bipartite and tripartite graphs [J].
Nakprasit, Keaitsuda Maneeruk ;
Nakprasit, Kittikorn .
INFORMATION PROCESSING LETTERS, 2017, 117 :40-44
[36]   Balanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations [J].
Inpoonjai, Phaisatcha ;
Jiarasuksakun, Thiradet .
IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2018, 13 (02) :1-13
[37]   Half Sampling on Bipartite Graphs [J].
Strichartz, Robert S. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2016, 22 (05) :1157-1173
[38]   Classification of reflexible regular embeddings and self-Petrie dual regular embeddings of complete bipartite graphs [J].
Kwak, Jin Ho ;
Kwon, Young Soo .
DISCRETE MATHEMATICS, 2008, 308 (11) :2156-2166
[39]   SPECTRA OF SOME SPECIAL BIPARTITE GRAPHS [J].
Laali, A. R. Fiuj ;
Javadi, H. Haj Seyyed .
MISKOLC MATHEMATICAL NOTES, 2017, 18 (01) :295-305
[40]   Decomposition of bipartite graphs into special subgraphs [J].
Chen, Guantao ;
Schelp, Richard H. .
DISCRETE APPLIED MATHEMATICS, 2007, 155 (03) :400-404