Cospectrality of complete bipartite graphs

被引:14
|
作者
Oboudi, Mohammad Reza [1 ,2 ]
机构
[1] Shiraz Univ, Dept Math, Coll Sci, Shiraz, Iran
[2] Inst Res Fundamental Sci IPM, Sch Math, Tehran, Iran
关键词
spectra of graphs; measures on spectra of graphs; cospectrality of graphs; the adjacency matrix of a graph; complete bipartite graphs; SPECTRA;
D O I
10.1080/03081087.2016.1162133
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Richard Brualdi proposed in [Research problems from the Aveiro workshop on graph spectra, Linear Algebra Appl. 2007; 423: 172-181] the following problem: (Problem AWGS. 4) Let G(n) and G'(n) be two non-isomorphic graphs on n vertices with spectra. lambda(1) >= lambda(2) >= ... >= lambda(n) and lambda'(1) >= lambda'(2) >= lambda'(n,) respectively. Define the distance between the spectra of G(n) and G'(n) as.(G(n), G'(n)) = n i= 1 (.i -. i) 2.. or use n i= 1 |.i -. i |... Define the cospectrality of Gn by cs(G(n)) = min{.(Gn, G'(n)) : G'(n) not isomorphic to G(n)}. Let csn = max{cs(G(n)) : Gn a graph on n vertices}. Problem A Investigate cs(G(n)) for special classes of graphs. Problem B Find a good upper bound on csn. In this paper, we study ProblemAand determine the cospectrality of all complete bipartite graphs by the Euclidian distance. More precisely, we show that for all positive integers m and n there are some positive integers r, s and a non-negative integer t such that cs(Km, n) =.(Km, n, Kr, s+ tK1), where Km, n is the complete bipartite graph with parts of sizes m and n.
引用
收藏
页码:2491 / 2497
页数:7
相关论文
共 50 条
  • [1] Cospectrality of graphs
    Abdollahi, Alireza
    Oboudi, Mohammad Reza
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 451 : 169 - 181
  • [2] Cospectrality of multipartite graphs
    Abdollahi, Alireza
    Zakeri, Niloufar
    ARS MATHEMATICA CONTEMPORANEA, 2022, 22 (01)
  • [3] Paintability of complete bipartite graphs
    Kashima, Masaki
    DISCRETE APPLIED MATHEMATICS, 2024, 346 : 279 - 289
  • [4] Total edge irregularity strength of complete graphs and complete bipartite graphs
    Jendrol', Stanislav
    Miskuf, Jozef
    Sotak, Roman
    DISCRETE MATHEMATICS, 2010, 310 (03) : 400 - 407
  • [5] Book drawings of complete bipartite graphs
    de Klerk, Etienne
    Pasechnik, Dmitrii V.
    Salazar, Gelasio
    DISCRETE APPLIED MATHEMATICS, 2014, 167 : 80 - 93
  • [6] Chaotic numbers of complete bipartite graphs and tripartite graphs
    Chiang, N. P.
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2006, 131 (03) : 485 - 491
  • [7] Chaotic Numbers of Complete Bipartite Graphs and Tripartite Graphs
    N. P. Chiang
    Journal of Optimization Theory and Applications, 2006, 131 : 485 - 491
  • [8] The eigenvalues of Hessian matrices of the complete and complete bipartite graphs
    Yazawa, Akiko
    JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 54 (04) : 1137 - 1157
  • [9] The eigenvalues of Hessian matrices of the complete and complete bipartite graphs
    Akiko Yazawa
    Journal of Algebraic Combinatorics, 2021, 54 : 1137 - 1157
  • [10] On the Distance Cospectrality of Threshold Graphs
    Lou, Zhenzhen
    Wang, Jianfeng
    Huang, Qiongxiang
    CSIAM TRANSACTIONS ON APPLIED MATHEMATICS, 2022, 3 (02): : 335 - 350