Physiological role of rhodoquinone in Euglena gracilis mitochondria

被引:18
|
作者
Castro-Guerrero, NA [1 ]
Jasso-Chávez, R [1 ]
Moreno-Sánchez, R [1 ]
机构
[1] Inst Nacl Cardiol, Dept Bioquim, Tlalpan 14080, DF, Mexico
来源
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS | 2005年 / 1710卷 / 2-3期
关键词
microaerophilia; rhodoquinone redox state; fumarate reductase; pyridine nucleotide-independent D-lactate dehydrogenase; cytochrome bc(1) complex; alternative oxidase;
D O I
10.1016/j.bbabio.2005.10.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Rhodoquinone (RQ) participates in fumarate reduction under anaerobiosis in some bacteria and some primitive eukaryotes. Euglena gracilis, a facultative anaerobic protist, also possesses significant rhodoquinone-9 (RQ(9)) content. Growth under low oxygen concentration induced a decrease in cytochromes and ubiquinone-9 (UQ(9)) content, while RQ(9) and fumarate reductase (FR) activity increased. However, in cells cultured under aerobic conditions, a relatively high RQ(9) content was also attained together with significant FR activity. In addition, RQ(9) purified from E. gracilis mitochondria was able to trigger the activities of cytochrome bc(1) complex, bc(1)-like alternative component and alternative oxidase, although with lower efficiency (higher K-m, lower V-m) than UQ(9). Moreover, purified E. gracilis mitochondrial NAD(+)-independent D-lactate dehydrogenase (D-iLDH) showed preference for RQ(9) as electron acceptor, whereas L-iLDH and succinate dehydrogenase preferred UQ9. These results indicated a physiological role for RQ(9) under aerobiosis and microaerophilia in E. gracilis mitochondria, in which RQ(9) mediates electron transfer between D-iLDH and other respiratory chain components, including FR. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:113 / 121
页数:9
相关论文
共 50 条
  • [1] ISOLATION OF MITOCHONDRIA FROM EUGLENA GRACILIS
    BUETOW, DE
    BUCHANAN, PJ
    EXPERIMENTAL CELL RESEARCH, 1964, 36 (01) : 204 - +
  • [2] THE PHYSIOLOGICAL-ROLE AND CATABOLISM OF ARGININE IN EUGLENA-GRACILIS
    PARK, BS
    HIROTANI, A
    NAKANO, Y
    KITAOKA, S
    AGRICULTURAL AND BIOLOGICAL CHEMISTRY, 1983, 47 (11): : 2561 - 2567
  • [3] Physiological characterization of gravitaxis in Euglena gracilis
    Richter, P
    Ntefidou, M
    Streb, C
    Lebert, M
    Häder, DP
    PROCEEDINGS OF THE EUROPEAN SYMPOSIUM ON LIFE IN SPACE FOR LIFE ON EARTH, 2002, 501 : 303 - 304
  • [4] EUGLENA-GRACILIS - FORMATION OF GIANT MITOCHONDRIA
    CALVAYRAC, R
    VANLENTE, F
    BUTOW, RA
    SCIENCE, 1971, 173 (3993) : 252 - +
  • [5] METABOLISM OF GLYCOLATE IN EUGLENA-GRACILIS .2. METABOLISM OF GLYCOLATE IN MITOCHONDRIA OF EUGLENA-GRACILIS
    YOKOTA, A
    NAKANO, Y
    KITAOKA, S
    AGRICULTURAL AND BIOLOGICAL CHEMISTRY, 1978, 42 (01): : 121 - 129
  • [6] PHYSIOLOGICAL RESPONSES OF Euglena gracilis TO COPPER STRESS
    Garcia, David Cervantes
    Gonzalez-Mendoza, Daniel
    Cervantes-Diaz, Lourdes
    Trejo, Adriana Morales
    Juarez, Onecimo Grimaldo
    Zamora-Bustillos, Roberto
    QUIMICA NOVA, 2011, 34 (07): : 1211 - 1214
  • [7] Euglena gracilis Rhodoquinone:Ubiquinone ratio and mitochondrial proteome differ under aerobic and anaerobic conditions
    Hoffmeister, M
    van der Klei, A
    Rotte, C
    van Grinsven, KWA
    van Hellemond, JJ
    Henze, K
    Tielens, AGM
    Martin, W
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (21) : 22422 - 22429
  • [8] THE OXIDATION OF EXOGENOUS NADH BY MITOCHONDRIA OF EUGLENA-GRACILIS
    KUMMEL, UW
    BRINKMANN, K
    PLANTA, 1988, 176 (02) : 261 - 268
  • [9] Presence of glyoxylate cycle enzymes in the mitochondria of Euglena gracilis
    Ono, K
    Kondo, M
    Osafune, T
    Miyatake, K
    Inui, H
    Kitaoka, S
    Nishimura, M
    Nakano, Y
    JOURNAL OF EUKARYOTIC MICROBIOLOGY, 2003, 50 (02) : 92 - 96
  • [10] SYNTHESIS OF SUGAR BY MITOCHONDRIA OF EUGLENA-GRACILIS Z
    BRIAND, J
    CALVAYRAC, R
    BIOLOGIE CELLULAIRE, 1980, 38 (03): : A6 - A6