Prospects for energy-efficient edge computing with integrated HfO2-based ferroelectric devices

被引:0
作者
O'Connor, Ian [1 ]
Cantan, Mayeul [1 ]
Marchand, Cedric [1 ]
Vilquin, Bertrand [1 ]
Slesazeck, Stefan [2 ]
Breyer, Evelyn T. [2 ]
Mulaosmanovic, Halid [2 ]
Mikolajick, Thomas [2 ,3 ]
Giraud, Bastien [4 ]
Noel, Jean-Philippe [4 ]
Ionescu, Adrian [5 ]
Stolichnov, Igor [5 ]
机构
[1] Univ Lyon, Ecole Cent Lyon, CNRS, Lyon Inst Nanotechnol, Ecully, France
[2] NaMLab GmbH, Dresden, Germany
[3] Tech Univ Dresden, Chair Nanoel Mat, Dresden, Germany
[4] Univ Grenoble Alpes, CEA, LETI, MINATEC Campus, Grenoble, France
[5] Ecole Polytech Fed Lausanne, Nanolab, Lausanne, Switzerland
来源
PROCEEDINGS OF THE 2018 26TH IFIP/IEEE INTERNATIONAL CONFERENCE ON VERY LARGE SCALE INTEGRATION (VLSI-SOC) | 2018年
基金
欧盟地平线“2020”;
关键词
ferroelectric devices; non-volatile memory; steep slope switch; low-power logic; logic-in-memory;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Edge computing requires highly energy efficient microprocessor units with embedded non-volatile memories to process data at IoT sensor nodes. Ferroelectric non-volatile memory devices are fast, low power and high endurance, and could greatly enhance energy-efficiency and allow flexibility for finer grain logic and memory. This paper will describe the basics of ferroelectric devices for both hysteretic (non-volatile memory) and negative capacitance (steep slope switch) devices, and then project how these can be used in low-power logic cell architectures and fine-grain logic-in-memory (LiM) circuits.
引用
收藏
页码:180 / 183
页数:4
相关论文
共 24 条
  • [11] Reliability of HfO2-Based Ferroelectric FETs: A Critical Review of Current and Future Challenges
    Zagni, Nicolo
    Puglisi, Francesco Maria
    Pavan, Paolo
    Alam, Muhammad Ashraful
    PROCEEDINGS OF THE IEEE, 2023, 111 (02) : 158 - 184
  • [12] Switching and Charge Trapping in HfO2-based Ferroelectric FETs: An Overview and Potential Applications
    Mulaosmanovic, Halid
    Breyer, Evelyn T.
    Mikolajick, Thomas
    Slesazeck, Stefan
    2020 IEEE ELECTRON DEVICES TECHNOLOGY AND MANUFACTURING CONFERENCE (EDTM 2020), 2020,
  • [13] Novel Asymmetric Operation Scheme for HfO2-Based FeRAM Based on Reconstruction of Ferroelectric Dynamics Impacts
    Fu, Zhiyuan
    Wang, Kaifeng
    Xu, Shaodi
    Huang, Qianqian
    Huang, Ru
    IEEE ELECTRON DEVICE LETTERS, 2024, 45 (01) : 20 - 23
  • [14] Si-Doped HfO2-Based Ferroelectric Tunnel Junctions with a Composite Energy Barrier for Non-Volatile Memory Applications
    Lee, Yoseop
    Song, Sungmun
    Ham, Woori
    Ahn, Seung-Eon
    MATERIALS, 2022, 15 (06)
  • [15] 50-fold endurance improvement in HfO2-based ferroelectric capacitor through hybrid recovery schemes
    Tang, Zhuohua
    Yang, Wanwang
    Song, Xujin
    Zhu, Haotong
    Tang, Nan
    Yang, Haozhang
    Feng, Yulin
    Zhou, Zheng
    Kang, Jinfeng
    Huang, Peng
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2025, 64 (03)
  • [16] Ultra-Low Voltage Schmitt Triggers Implemented by HfO2-Based Ferroelectric Field-Effect Transistors
    Zhao, Ruiting
    Liu, Houfang
    Lu, Tian
    Shao, Minghao
    Zhao, Xiaoyue
    Yan, Zhaoyi
    Yang, Yi
    Ren, Tian-Ling
    IEEE ELECTRON DEVICE LETTERS, 2022, 43 (07) : 1145 - 1148
  • [17] Origin of the Endurance Degradation in the Novel HfO2-based 1T Ferroelectric Non-Volatile Memories
    Yurchuk, Ekaterina
    Mueller, Stefan
    Martin, Dominik
    Slesazeck, Stefan
    Schroeder, Uwe
    Mikolajick, Thomas
    Mueller, Johannes
    Paul, Jan
    Hoffmann, Raik
    Sundqvist, Jonas
    Schloesser, Till
    Boschke, Roman
    van Bentum, Ralf
    Trentzsch, Martin
    2014 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM, 2014,
  • [18] Comparative Analysis and Energy-Efficient Write Scheme of Ferroelectric FET-Based Memory Cells
    Ko, Dong Han
    Oh, Tae Woo
    Lim, Sehee
    Kim, Se Keon
    Jung, Seong-Ook
    IEEE ACCESS, 2021, 9 : 127895 - 127905
  • [19] Enhanced synaptic properties in HfO2-based trilayer memristor by using ZrO2-x oxygen vacancy reservoir layer for neuromorphic computing
    Boynazarov, Turgun
    Lee, Joonbong
    Lee, Hojin
    Lee, Sangwoo
    Chung, Hyunbin
    Ryu, Dae Haa
    Abbas, Haider
    Choi, Taekjib
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 227 : 164 - 173
  • [20] An Energy-Efficient Nonvolatile In-Memory Computing Architecture for Extreme Learning Machine by Domain-Wall Nanowire Devices
    Wang, Yuhao
    Yu, Hao
    Ni, Leibin
    Huang, Guang-Bin
    Yan, Mei
    Weng, Chuliang
    Yang, Wei
    Zhao, Junfeng
    IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2015, 14 (06) : 998 - 1012