Spectral Statistics of ErdAs-R,nyi Graphs II: Eigenvalue Spacing and the Extreme Eigenvalues

被引:150
作者
Erdos, Laszlo [1 ]
Knowles, Antti [2 ]
Yau, Horng-Tzer [2 ]
Yin, Jun [2 ]
机构
[1] Univ Munich, Inst Math, D-80333 Munich, Germany
[2] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
SEMICIRCLE LAW; ORTHOGONAL POLYNOMIALS; WIGNER MATRICES; UNIVERSALITY; ASYMPTOTICS; EDGE; DELOCALIZATION; DISTRIBUTIONS; RESPECT;
D O I
10.1007/s00220-012-1527-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the ensemble of adjacency matrices of ErdAs-R,nyi random graphs, i.e. graphs on N vertices where every edge is chosen independently and with probability p a parts per thousand p(N). We rescale the matrix so that its bulk eigenvalues are of order one. Under the assumption , we prove the universality of eigenvalue distributions both in the bulk and at the edge of the spectrum. More precisely, we prove (1) that the eigenvalue spacing of the ErdAs-R,nyi graph in the bulk of the spectrum has the same distribution as that of the Gaussian orthogonal ensemble; and (2) that the second largest eigenvalue of the ErdAs-R,nyi graph has the same distribution as the largest eigenvalue of the Gaussian orthogonal ensemble. As an application of our method, we prove the bulk universality of generalized Wigner matrices under the assumption that the matrix entries have at least 4 + epsilon moments.
引用
收藏
页码:587 / 640
页数:54
相关论文
共 38 条
[1]  
ANDERSON G., 2009, STUDIES ADV MATH, V118
[2]   Poisson convergence for the largest eigenvalues of heavy tailed random matrices [J].
Auffinger, Antonio ;
Ben Arous, Gerard ;
Peche, Sandrine .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2009, 45 (03) :589-610
[3]   On the top eigenvalue of heavy-tailed random matrices [J].
Biroli, G. ;
Bouchaud, J.-P. ;
Potters, M. .
EPL, 2007, 78 (01)
[4]   Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model [J].
Bleher, P ;
Its, A .
ANNALS OF MATHEMATICS, 1999, 150 (01) :185-266
[5]   ON EXTENSIONS OF BRUNN-MINKOWSKI AND PREKOPA-LEINDLER THEOREMS, INCLUDING INEQUALITIES FOR LOG CONCAVE FUNCTIONS, AND WITH AN APPLICATION TO DIFFUSION EQUATION [J].
BRASCAMP, HJ ;
LIEB, EH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1976, 22 (04) :366-389
[6]  
Deift P, 1999, COMMUN PUR APPL MATH, V52, P1491, DOI 10.1002/(SICI)1097-0312(199912)52:12<1491::AID-CPA2>3.0.CO
[7]  
2-#
[8]  
Deift P, 1999, COMMUN PUR APPL MATH, V52, P1335, DOI 10.1002/(SICI)1097-0312(199911)52:11<1335::AID-CPA1>3.0.CO
[9]  
2-1
[10]   A BROWNIAN-MOTION FOR EIGENVALUES OF A RANDOM MATRIX [J].
DYSON, FJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1962, 3 (06) :1191-+