Wireless Fleet Charging System for Electric Bicycles

被引:41
作者
Beh, Hui Zhi [1 ]
Covic, Grant A. [1 ]
Boys, John T. [1 ]
机构
[1] Univ Auckland, Auckland 1142, New Zealand
关键词
Bicycles; electric vehicles; inductive power transmission; POWER; PICKUP; DESIGN;
D O I
10.1109/JESTPE.2014.2319104
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a double-coupled inductive system for multi-pickup systems, which is intended for wireless charging of a fleet of electric bicycles. An intermediary coupler is introduced between the primary and pickup where it operates as a switch. The intermediary coupler turns ON when the bicycle is present and turns OFF when the bicycle is absent to prevent magnetic fields from radiating into the environment. The switching method for the proposed intermediary coupler configuration provides quick turn ON and OFF without significant transient spikes. Sensitivity analysis of the proposed system was undertaken to analyze the reflected impedance at the primary due to variations in the tuning components. A practical system that is capable of producing up to 400 W at its output has been built. The proposed intermediary coupler and pickup has achieved an efficiency of 86% at 400-W output. The overall system efficiency including the power supply was 76%. With more branches of intermediary couplers and pickups drawing power from the primary power, the standing losses in the system are shared and the system efficiency improves.
引用
收藏
页码:75 / 86
页数:12
相关论文
共 31 条
[1]   A Study on Magnetic Field Repeater in Wireless Power Transfer [J].
Ahn, Dukju ;
Hong, Songcheol .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60 (01) :360-371
[2]  
Beh HZ, 2013, IEEE ENER CONV, P2904, DOI 10.1109/ECCE.2013.6647079
[3]   Stability and control of inductively coupled power transfer systems [J].
Boys, JT ;
Covic, GA ;
Green, AW .
IEE PROCEEDINGS-ELECTRIC POWER APPLICATIONS, 2000, 147 (01) :37-43
[4]   Development of a Single-Sided Flux Magnetic Coupler for Electric Vehicle IPT Charging Systems [J].
Budhia, Mickel ;
Boys, John T. ;
Covic, Grant A. ;
Huang, Chang-Yu .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2013, 60 (01) :318-328
[5]   Design and Optimization of Circular Magnetic Structures for Lumped Inductive Power Transfer Systems [J].
Budhia, Mickel ;
Covic, Grant A. ;
Boys, John T. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2011, 26 (11) :3096-3108
[6]  
Chan-I Chen, 2008, IECON 2008 - 34th Annual Conference of IEEE Industrial Electronics Society, P932, DOI 10.1109/IECON.2008.4758078
[7]  
Chigira M, 2011, IEEE ENER CONV, P260, DOI 10.1109/ECCE.2011.6063778
[8]   A new concept: Asymmetrical pick-ups for inductively coupled power transfer monorail systems [J].
Elliott, Grant A. J. ;
Covic, Grant A. ;
Kacprzak, Dariusz ;
Boys, John T. .
IEEE TRANSACTIONS ON MAGNETICS, 2006, 42 (10) :3389-3391
[9]   Design of transcutaneous energy transmission system using a series resonant converter [J].
Ghahary, Ali ;
Cho, Bo H. .
IEEE Transactions on Power Electronics, 1992, 7 (02) :261-269
[10]   An Approximate Dynamic Model of LCL-T-Based Inductive Power Transfer Power Supplies [J].
Hao, Hao ;
Covic, Grant Anthony ;
Boys, John Talbot .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2014, 29 (10) :5554-5567