Modelling the Water Sorption Isotherms of Quinoa Seeds (Chenopodium quinoa Willd.) and Determination of Sorption Heats

被引:16
作者
Miranda, Margarita [1 ]
Vega-Galvez, Antonio [1 ,2 ]
Sanders, Mariela [1 ]
Lopez, Jessica [1 ]
Lemus-Mondaca, Roberto [1 ,3 ]
Martinez, Enrique [2 ]
Di Scala, Karina [4 ,5 ]
机构
[1] Univ La Serena, Dept Food Engn, La Serena, Chile
[2] Univ La Serena, CEAZA, La Serena, Chile
[3] Univ Santiago Chile, Dept Mech Engn, Santiago, Chile
[4] Univ Nacl Mar del Plata, Food Engn Res Grp, RA-7600 Mar Del Plata, Argentina
[5] Consejo Nacl Invest Cient & Tecn CONICET, Mar Del Plata, Argentina
关键词
Quinoa; Sorption isotherms; Isosteric sorption heat; Mathematical modelling; DESORPTION ISOTHERMS; ADSORPTION-ISOTHERMS; PROTEIN ISOLATE; ISOSTERIC HEAT; TEMPERATURE; QUALITY;
D O I
10.1007/s11947-011-0610-y
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Adsorption and desorption isotherms of quinoa seeds (Chenopodium quinoa Willd.) were measured using the static gravimetric method at three temperatures (20, 40 and 60 A degrees C). Water activity ranged from 0.118 to 0.937. The moisture sorption behaviour of quinoa was temperature dependent, as indicated by a decrease in equilibrium moisture content, at all levels of a (w), with increasing temperature. Eight mathematical equations available in the literature were used to model the experimental data, namely, GAB, BET, Caurie, Henderson, Oswin, Halsey, Smith and Iglesias-Chirife. All the equations showed generally a good fit; however, the Iglesias-Chirife and Oswin equations were considered the best to predict the experimental data for both isotherms. Effect of temperature on model parameters was analysed and studied through an Arrhenius-type equation. The net isosteric heats of desorption and adsorption were determined by applying the Clausius-Clapeyron equation resulting in 69.24 kJ mol(-1) for desorption and 61.26 kJ mol(-1) for adsorption. The experimental heat data were satisfactorily modelled by Tsami's equation.
引用
收藏
页码:1686 / 1693
页数:8
相关论文
共 47 条
[21]   Sorption isotherms and isosteric heat of sorption for grapes, apricots, apples and potatoes [J].
Kaymak-Ertekin, F ;
Gedik, A .
LEBENSMITTEL-WISSENSCHAFT UND-TECHNOLOGIE-FOOD SCIENCE AND TECHNOLOGY, 2004, 37 (04) :429-438
[22]  
KOZIOL M J, 1992, Journal of Food Composition and Analysis, V5, P35, DOI 10.1016/0889-1575(92)90006-6
[23]  
Labuza T., 1985, J FOOD SCI, V50, P392
[24]   Kinetic study of dehydration and desorption isotherms of red alga Gracilaria [J].
Lemus, Roberto A. ;
Perez, Mario ;
Andres, Ana ;
Roco, Teresa ;
Tello, Cristian M. ;
Vega, Antonio .
LWT-FOOD SCIENCE AND TECHNOLOGY, 2008, 41 (09) :1592-1599
[25]   Moisture sorption isotherms and heat of sorption of bitter orange leaves (Citrus aurantium) [J].
Mohamed, LA ;
Kouhila, M ;
Jamali, A ;
Lahsasni, S ;
Mahrouz, M .
JOURNAL OF FOOD ENGINEERING, 2005, 67 (04) :491-498
[26]   Sorption isotherms of turnip top leaves and stems in the temperature range from 298 to 328 K [J].
Moreira, R ;
Chenlo, F ;
Vázquez, MJ ;
Cameán, P .
JOURNAL OF FOOD ENGINEERING, 2005, 71 (02) :193-199
[27]   Nutritional evaluation and functional properties of quinoa (Chenopodium quinoa) flour [J].
Ogungbenle, HN .
INTERNATIONAL JOURNAL OF FOOD SCIENCES AND NUTRITION, 2003, 54 (02) :153-158
[28]   Modeling of water sorption isotherm for corn starch [J].
Peng, Guilan ;
Chen, Xiaoguang ;
Wu, Wenfu ;
Jiang, Xiujuan .
JOURNAL OF FOOD ENGINEERING, 2007, 80 (02) :562-567
[29]   Glass transition temperatures and water sorption isotherms of cassava starch [J].
Perdomo, J. ;
Cova, A. ;
Sandoval, A. J. ;
García, L. ;
Laredo, E. ;
Mueller, A. J. .
CARBOHYDRATE POLYMERS, 2009, 76 (02) :305-313
[30]   Sorption isotherms, GAB parameters and isosteric heat of sorption [J].
Quirijns, EJ ;
van Boxtel, AJB ;
van Loon, WKP ;
van Straten, G .
JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2005, 85 (11) :1805-1814