AUTOMATIC CLASSIFICATION OF VARIABLE STARS IN CATALOGS WITH MISSING DATA

被引:33
|
作者
Pichara, Karim [1 ,2 ,3 ]
Protopapas, Pavlos [2 ,4 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Comp Sci, Santiago, Chile
[2] Harvard Univ, Inst Appl Computat Sci, Cambridge, MA 02138 USA
[3] Milky Way Millennium Nucleus, Santiago 7820436, Chile
[4] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
关键词
methods: data analysis; stars: statistics; stars: variables: general; LARGE-MAGELLANIC-CLOUD; TIME-SERIES; CANDIDATES; SELECTION;
D O I
10.1088/0004-637X/777/2/83
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present an automatic classification method for astronomical catalogs with missing data. We use Bayesian networks and a probabilistic graphical model that allows us to perform inference to predict missing values given observed data and dependency relationships between variables. To learn a Bayesian network from incomplete data, we use an iterative algorithm that utilizes sampling methods and expectation maximization to estimate the distributions and probabilistic dependencies of variables from data with missing values. To test our model, we use three catalogs with missing data (SAGE, Two Micron All Sky Survey, and UBVI) and one complete catalog (MACHO). We examine how classification accuracy changes when information from missing data catalogs is included, how our method compares to traditional missing data approaches, and at what computational cost. Integrating these catalogs with missing data, we find that classification of variable objects improves by a few percent and by 15% for quasar detection while keeping the computational cost the same.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] On Neural Architectures for Astronomical Time-series Classification with Application to Variable Stars
    Jamal, Sara
    Bloom, Joshua S.
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2020, 250 (02)
  • [32] Understanding Automatic Diagnosis and Classification Processes with Data Visualization
    Bruno, Pierangela
    Calimeri, Francesco
    Kitanidis, Alexandre Sebastien
    De Momi, Elena
    PROCEEDINGS OF THE 2020 IEEE INTERNATIONAL CONFERENCE ON HUMAN-MACHINE SYSTEMS (ICHMS), 2020, : 399 - 404
  • [33] Multiperiodic semiregular variable stars in the ASAS data base: A pilot study
    Fuentes-Morales, I.
    Vogt, N.
    ASTRONOMISCHE NACHRICHTEN, 2014, 335 (10) : 1072 - 1077
  • [34] VARIABLE STARS IN THE GLOBULAR CLUSTER NGC 2808
    Kunder, Andrea
    Stetson, Peter B.
    Catelan, Marcio
    Walker, Alistair R.
    Amigo, Pia
    ASTRONOMICAL JOURNAL, 2013, 145 (02)
  • [35] Event Classification with Imbalanced and Missing Data for an Air-Handling Unit
    Huotari, Matti
    Framling, Kary
    2022 IEEE THE 5TH INTERNATIONAL CONFERENCE ON BIG DATA AND ARTIFICIAL INTELLIGENCE (BDAI 2022), 2022, : 82 - 86
  • [36] K2 variable catalogue - II. Machine learning classification of variable stars and eclipsing binaries in K2 fields 0-4
    Armstrong, D. J.
    Kirk, J.
    Lam, K. W. F.
    McCormac, J.
    Osborn, H. P.
    Spake, J.
    Walker, S.
    Brown, D. J. A.
    Kristiansen, M. H.
    Pollacco, D.
    West, R.
    Wheatley, P. J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 456 (02) : 2260 - 2272
  • [37] Periodic variable A-F spectral type stars in the northern TESS continuous viewing zone I. Identification and classification
    Skarka, M.
    Zak, J.
    Fedurco, M.
    Paunzen, E.
    Henzl, Z.
    Masek, M.
    Karjalainen, R.
    Arias, J. P. Sanchez
    Sodor, A.
    Auer, R. F.
    Kabath, P.
    Karjalainen, M.
    Liska, J.
    Stegner, D.
    ASTRONOMY & ASTROPHYSICS, 2022, 666
  • [38] Gaia Data Release 2 All-sky classification of high-amplitude pulsating stars
    Rimoldini, L.
    Holl, B.
    Audard, M.
    Mowlavi, N.
    Nienartowicz, K.
    Evans, D. W.
    Guy, L. P.
    Lecoeur-Taibi, I.
    de Fombelle, G. Jevardat
    Marchal, O.
    Roelens, M.
    De Ridder, J.
    Sarro, L. M.
    Regibo, S.
    Lopez, M.
    Clementini, G.
    Ripepi, V.
    Molinaro, R.
    Garofalo, A.
    Molnar, L.
    Plachy, E.
    Juhasz, A.
    Szabados, L.
    Lebzelter, T.
    Teyssier, D.
    Eyer, L.
    ASTRONOMY & ASTROPHYSICS, 2019, 625
  • [39] The Bulgarian Contribution to the Study of variable stars on observational data from the Kepler mission
    Kjurkchieva, D. P.
    Dimitrov, D. P.
    Radeva, V. S.
    Vasileva, D. L.
    Atanasova, T. V.
    Stateva, Iv.
    Petrov, N. I.
    Iliev, I. Kh.
    BULGARIAN ASTRONOMICAL JOURNAL, 2018, 28 : 49 - 59
  • [40] Spectral classification of stars based on LAMOST spectra
    Liu, Chao
    Cui, Wen-Yuan
    Zhang, Bo
    Wan, Jun-Chen
    Deng, Li-Cai
    Hou, Yong-Hui
    Wang, Yue-Fei
    Yang, Ming
    Zhang, Yong
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2015, 15 (08) : 1137 - 1153