AUTOMATIC CLASSIFICATION OF VARIABLE STARS IN CATALOGS WITH MISSING DATA

被引:33
|
作者
Pichara, Karim [1 ,2 ,3 ]
Protopapas, Pavlos [2 ,4 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Comp Sci, Santiago, Chile
[2] Harvard Univ, Inst Appl Computat Sci, Cambridge, MA 02138 USA
[3] Milky Way Millennium Nucleus, Santiago 7820436, Chile
[4] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
关键词
methods: data analysis; stars: statistics; stars: variables: general; LARGE-MAGELLANIC-CLOUD; TIME-SERIES; CANDIDATES; SELECTION;
D O I
10.1088/0004-637X/777/2/83
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present an automatic classification method for astronomical catalogs with missing data. We use Bayesian networks and a probabilistic graphical model that allows us to perform inference to predict missing values given observed data and dependency relationships between variables. To learn a Bayesian network from incomplete data, we use an iterative algorithm that utilizes sampling methods and expectation maximization to estimate the distributions and probabilistic dependencies of variables from data with missing values. To test our model, we use three catalogs with missing data (SAGE, Two Micron All Sky Survey, and UBVI) and one complete catalog (MACHO). We examine how classification accuracy changes when information from missing data catalogs is included, how our method compares to traditional missing data approaches, and at what computational cost. Integrating these catalogs with missing data, we find that classification of variable objects improves by a few percent and by 15% for quasar detection while keeping the computational cost the same.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Implementation of Instrumental Variable Bounds for Data Missing Not at Random
    Marden, Jessica R.
    Wang, Linbo
    Tchetgen, Eric J. Tchetgen
    Walter, Stefan
    Glymour, M. Maria
    Wirth, Kathleen E.
    EPIDEMIOLOGY, 2018, 29 (03) : 364 - 368
  • [22] A Classification Catalog of Periodic Variable Stars for LAMOST DR9 Based on Machine Learning
    Qiao, Peiyun
    Xu, Tingting
    Wang, Feng
    Mei, Ying
    Deng, Hui
    Tan, Lei
    Liu, Chao
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2024, 272 (01)
  • [23] The EPOCH Project I. Periodic variable stars in the EROS-2 LMC database
    Kim, Dae-Won
    Protopapas, Pavlos
    Bailer-Jones, Coryn A. L.
    Byun, Yong-Ik
    Chang, Seo-Won
    Marquette, Jean-Baptiste
    Shin, Min-Su
    ASTRONOMY & ASTROPHYSICS, 2014, 566
  • [24] Automating Discovery and Classification of Transients and Variable Stars in the Synoptic Survey Era
    Bloom, J. S.
    Richards, J. W.
    Nugent, P. E.
    Quimby, R. M.
    Kasliwal, M. M.
    Starr, D. L.
    Poznanski, D.
    Ofek, E. O.
    Cenko, S. B.
    Butler, N. R.
    Kulkarni, S. R.
    Gal-Yam, A.
    Law, N.
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2012, 124 (921) : 1175 - 1196
  • [25] Classification of Variable Stars Using Thick-Pen Transform Method
    Park, M.
    Oh, H. -S.
    Kim, D.
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 2013, 125 (926) : 470 - 476
  • [26] A new variable importance measure for random forests with missing data
    Hapfelmeier, Alexander
    Hothorn, Torsten
    Ulm, Kurt
    Strobl, Carolin
    STATISTICS AND COMPUTING, 2014, 24 (01) : 21 - 34
  • [27] Automated supervised classification of variable stars in the CoRoT programme Method and application to the first four exoplanet fields
    Debosscher, J.
    Sarro, L. M.
    Lopez, M.
    Deleuil, M.
    Aerts, C.
    Auvergne, M.
    Baglin, A.
    Baudin, F.
    Chadid, M.
    Charpinet, S.
    Cuypers, J.
    De Ridder, J.
    Garrido, R.
    Hubert, A. M.
    Janot-Pacheco, E.
    Jorda, L.
    Kaiser, A.
    Kallinger, T.
    Kollath, Z.
    Maceroni, C.
    Mathias, P.
    Michel, E.
    Moutou, C.
    Neiner, C.
    Ollivier, M.
    Samadi, R.
    Solano, E.
    Surace, C.
    Vandenbussche, B.
    Weiss, W. W.
    ASTRONOMY & ASTROPHYSICS, 2009, 506 (01): : 519 - 534
  • [28] Gaia Data Release 2 Variable stars in the colour-absolute magnitude diagram
    Eyer, L.
    Rimoldini, L.
    Audard, M.
    Anderson, R., I
    Nienartowicz, K.
    Glass, F.
    Marchal, O.
    Grenon, M.
    Mowlavi, N.
    Holl, B.
    Clementini, G.
    Aerts, C.
    Mazeh, T.
    Evans, D. W.
    Szabados, L.
    Brown, A. G. A.
    Vallenari, A.
    Prusti, T.
    de Bruijne, J. H. J.
    Babusiaux, C.
    Bailer-Jones, C. A. L.
    Biermann, M.
    Jansen, F.
    Jordi, C.
    Klioner, S. A.
    Lammers, U.
    Lindegren, L.
    Luri, X.
    Mignard, F.
    Panem, C.
    Pourbaix, D.
    Randich, S.
    Sartoretti, P.
    Siddiqui, H., I
    Soubiran, C.
    van Leeuwen, F.
    Walton, N. A.
    Arenou, F.
    Bastian, U.
    Cropper, M.
    Drimmel, R.
    Katz, D.
    Lattanzi, M. G.
    Bakker, J.
    Cacciari, C.
    Castaneda, J.
    Chaoul, L.
    Cheek, N.
    De Angeli, F.
    Fabricius, C.
    ASTRONOMY & ASTROPHYSICS, 2019, 623
  • [29] Searching for Hot Subdwarf Stars from the LAMOST Spectra. III. Classification of Hot Subdwarf Stars in the Fourth Data Release of LAMOST Using a Deep Learning Method
    Bu, Yude
    Zeng, Jingjing
    Lei, Zhenxin
    Yi, Zhenping
    ASTROPHYSICAL JOURNAL, 2019, 886 (02)
  • [30] Gaia Data Release 3 All-sky classification of 12.4 million variable sources into 25 classes
    Rimoldini, Lorenzo
    Holl, Berry
    Gavras, Panagiotis
    Audard, Marc
    De Ridder, Joris
    Mowlavi, Nami
    Nienartowicz, Krzysztof
    de Fombelle, Gregory Jevardat
    Lecoeur-Taibi, Isabelle
    Karbevska, Lea
    Evans, Dafydd W.
    Abraham, Peter
    Carnerero, Maria I.
    Clementini, Gisella
    Distefano, Elisa
    Garofalo, Alessia
    Garcia-Lario, Pedro
    Gomel, Roy
    Klioner, Sergei A.
    Kruszynska, Katarzyna
    Lanzafame, Alessandro C.
    Lebzelter, Thomas
    Marton, Gabor
    Mazeh, Tsevi
    Molinaro, Roberto
    Panahi, Aviad
    Raiteri, Claudia M.
    Ripepi, Vincenzo
    Szabados, Laszlo
    Teyssier, David
    Trabucchi, Michele
    Wyrzykowski, Lukasz
    Zucker, Shay
    Eyer, Laurent
    ASTRONOMY & ASTROPHYSICS, 2023, 674