AUTOMATIC CLASSIFICATION OF VARIABLE STARS IN CATALOGS WITH MISSING DATA

被引:33
|
作者
Pichara, Karim [1 ,2 ,3 ]
Protopapas, Pavlos [2 ,4 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Comp Sci, Santiago, Chile
[2] Harvard Univ, Inst Appl Computat Sci, Cambridge, MA 02138 USA
[3] Milky Way Millennium Nucleus, Santiago 7820436, Chile
[4] Harvard Smithsonian Ctr Astrophys, Cambridge, MA 02138 USA
关键词
methods: data analysis; stars: statistics; stars: variables: general; LARGE-MAGELLANIC-CLOUD; TIME-SERIES; CANDIDATES; SELECTION;
D O I
10.1088/0004-637X/777/2/83
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present an automatic classification method for astronomical catalogs with missing data. We use Bayesian networks and a probabilistic graphical model that allows us to perform inference to predict missing values given observed data and dependency relationships between variables. To learn a Bayesian network from incomplete data, we use an iterative algorithm that utilizes sampling methods and expectation maximization to estimate the distributions and probabilistic dependencies of variables from data with missing values. To test our model, we use three catalogs with missing data (SAGE, Two Micron All Sky Survey, and UBVI) and one complete catalog (MACHO). We examine how classification accuracy changes when information from missing data catalogs is included, how our method compares to traditional missing data approaches, and at what computational cost. Integrating these catalogs with missing data, we find that classification of variable objects improves by a few percent and by 15% for quasar detection while keeping the computational cost the same.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] META-CLASSIFICATION FOR VARIABLE STARS
    Pichara, Karim
    Protopapas, Pavlos
    Leon, Daniel
    ASTROPHYSICAL JOURNAL, 2016, 819 (01)
  • [2] Automatic Survey-invariant Classification of Variable Stars
    Benavente, Patricio
    Protopapas, Pavlos
    Pichara, Karim
    ASTROPHYSICAL JOURNAL, 2017, 845 (02)
  • [3] A package for the automated classification of periodic variable stars
    Kim, Dae-Won
    Bailer-Jones, Coryn A. L.
    ASTRONOMY & ASTROPHYSICS, 2016, 587
  • [4] Streaming classification of variable stars
    Zorich, L.
    Pichara, K.
    Protopapas, P.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 492 (02) : 2897 - 2909
  • [5] Unsupervised classification of variable stars
    Valenzuela, Lucas
    Pichara, Karim
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 474 (03) : 3259 - 3272
  • [6] LEAVES: An Expandable Light-curve Data Set for Automatic Classification of Variable Stars
    Fei, Ya
    Yu, Ce
    Li, Kun
    Chen, Xiaodian
    Zhang, Yajie
    Cui, Chenzhou
    Xiao, Jian
    Xu, Yunfei
    Tao, Yihan
    ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 2024, 275 (01)
  • [7] Supervised ensemble classification of Kepler variable stars
    Bass, G.
    Borne, K.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 459 (04) : 3721 - 3737
  • [8] CLUSTERING-BASED FEATURE LEARNING ON VARIABLE STARS
    Mackenzie, Cristobal
    Pichara, Karim
    Protopapas, Pavlos
    ASTROPHYSICAL JOURNAL, 2016, 820 (02)
  • [9] ON MACHINE-LEARNED CLASSIFICATION OF VARIABLE STARS WITH SPARSE AND NOISY TIME-SERIES DATA
    Richards, Joseph W.
    Starr, Dan L.
    Butler, Nathaniel R.
    Bloom, Joshua S.
    Brewer, John M.
    Crellin-Quick, Arien
    Higgins, Justin
    Kennedy, Rachel
    Rischard, Maxime
    ASTROPHYSICAL JOURNAL, 2011, 733 (01)
  • [10] Automated supervised classification of variable stars - I. methodology
    Debosscher, J.
    Sarro, L. M.
    Aerts, C.
    Cuypers, J.
    Vandenbussche, B.
    Garrido, R.
    Solano, E.
    ASTRONOMY & ASTROPHYSICS, 2007, 475 (03) : 1159 - 1183