Kardar-Parisi-Zhang Physics in the Quantum Heisenberg Magnet

被引:160
作者
Ljubotina, Marko [1 ]
Znidaric, Marko [1 ]
Prosen, Tomaz [1 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Phys Dept, Ljubljana 1000, Slovenia
基金
欧洲研究理事会;
关键词
33;
D O I
10.1103/PhysRevLett.122.210602
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Equilibrium spatiotemporal correlation functions are central to understanding weak nonequilibrium physics. In certain local one-dimensional classical systems with three conservation laws they show universal features. Namely, fluctuations around ballistically propagating sound modes can be described by the celebrated Kardar-Parisi-Zhang (KPZ) universality class. Can such a universality class be found also in quantum systems? By unambiguously demonstrating that the KPZ scaling function describes magnetization dynamics in the SU(2) symmetric Heisenberg spin chain we show, for the first time, that this is so. We achieve that by introducing new theoretical and numerical tools, and make a puzzling observation that the conservation of energy does not seem to matter for the KPZ physics.
引用
收藏
页数:6
相关论文
共 29 条
[1]  
[Anonymous], 2017, NONEQUILIBRIUM STAT
[2]   Subdiffusive front scaling in interacting integrable models [J].
Bulchandani, Vir B. ;
Karrasch, Christoph .
PHYSICAL REVIEW B, 2019, 99 (12)
[3]  
Das A., ARXIV190100024
[4]   Numerical test of hydrodynamic fluctuation theory in the Fermi-Pasta-Ulam chain [J].
Das, Suman G. ;
Dhar, Abhishek ;
Saito, Keiji ;
Mendl, Christian B. ;
Spohn, Herbert .
PHYSICAL REVIEW E, 2014, 90 (01)
[5]   Diffusion in generalized hydrodynamics and quasiparticle scattering [J].
De Nardis, Jacopo ;
Bernard, Denis ;
Doyon, Benjamin .
SCIPOST PHYSICS, 2019, 6 (04)
[6]   Kinetic Theory of Spin Diffusion and Superdiffusion in XXZ Spin Chains [J].
Gopalakrishnan, Sarang ;
Vasseur, Romain .
PHYSICAL REVIEW LETTERS, 2019, 122 (12)
[7]  
Halpin-Healy T, 2015, J STAT PHYS, V160, P794, DOI 10.1007/s10955-015-1282-1
[8]  
Hunyadi V, 2004, PHYS REV E, V69, DOI 10.1103/PhysRevE.69.066103
[9]   Superdiffusion in One-Dimensional Quantum Lattice Models [J].
Ilievski, Enej ;
De Nardis, Jacopo ;
Medenjak, Marko ;
Prosen, Tomaz .
PHYSICAL REVIEW LETTERS, 2018, 121 (23)
[10]   DYNAMIC SCALING OF GROWING INTERFACES [J].
KARDAR, M ;
PARISI, G ;
ZHANG, YC .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :889-892