Twisted Maass-Koecher series and spinor zeta functions

被引:13
作者
Breulmann, S [1 ]
Kohnen, W [1 ]
机构
[1] Univ Heidelberg, Math Inst, D-69120 Heidelberg, Germany
关键词
D O I
10.1017/S0027763000007029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that a Siegel-Hecke eigenform of integral weight k and genus 2 is uniquely determined by its Fourier coefficients indexed by nT where T runs over all half-integral positive definite primitive matrices of size 2 and n over all squarefree positive integers, The proof uses analytic arguments involving Koecher-MaaB series and spinor zeta functions.
引用
收藏
页码:153 / 160
页数:8
相关论文
共 6 条
[1]  
Andrianov A. N., 1974, Russ. Math. Surv, V29, P45, DOI [10.1070/RM1974v029n03ABEH001285, DOI 10.1070/RM1974V029N03ABEH001285]
[3]   REPRESENTATIONS OF QUADRATIC-FORMS AND THEIR APPLICATION TO SELBERGS ZETA FUNCTIONS - DEDICATED TO MEMORY OF HONDA,T [J].
KITAOKA, Y .
NAGOYA MATHEMATICAL JOURNAL, 1976, 63 (OCT) :153-162
[4]   ON HECKE EIGENFORMS OF HALF-INTEGRAL WEIGHT [J].
KOHNEN, W .
MATHEMATISCHE ANNALEN, 1992, 293 (03) :427-431
[5]  
KUBOTA T, 1973, ELMENTARY THEORY EIS
[6]  
ZAGIER D, 1981, ZETAFUNKTIONEN QUADR