Extended generalized Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrodinger equation

被引:150
|
作者
Li, Bang-Qing [2 ]
Ma, Yu-Lan [1 ]
机构
[1] Beijing Technol & Business Univ, Sch Math & Stat, Beijing 100048, Peoples R China
[2] Beijing Technol & Business Univ, Sch Comp & Informat Engn, Beijing 100048, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Extended generalized Darboux transformation; Nonlinear Schrodinger system; Breather; Rogue wave; Hybrid wave solution; HIGHER-ORDER; CONSERVATION-LAWS; SOLITON-SOLUTIONS; OPTICAL SOLITONS; DYNAMICS; SYSTEM; IMPACT; EVEN; ODD;
D O I
10.1016/j.amc.2020.125469
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An extended generalized Darboux transformation method is proposed to construct the hybrid rogue wave and breather solutions for a classical nonlinear Schrodinger equation. Three types of hybrid wave solutions are obtained: (i) the hybrid first-order rogue wave and breather; (ii) the hybrid second-order rogue wave and first-order breather; (iii) the hybrid first-order rogue wave and second-order breather. These solutions are novel and can be used to investigate the dynamical characteristic of the hybrid rogue waves and breathers. The control and interaction based on the parameters of the hybrid wave solution are graphically demonstrated. An exact link is established between the hybrid solutions and the rogue wave solutions via setting the parameter at special value. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Darboux transformation and soliton solutions for generalized nonlinear Schrodinger equations
    Geng, XG
    Tam, HW
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1999, 68 (05) : 1508 - 1512
  • [42] Breather and rogue wave solutions for a nonlinear Schrodinger-type system in plasmas
    Meng, Gao-Qing
    Qin, Jin-Lei
    Yu, Guo-Liang
    NONLINEAR DYNAMICS, 2015, 81 (1-2) : 739 - 751
  • [43] Breather Solutions and Their Rouge Wave Limits of Nonlinear Schrodinger Equation
    Du Zhifeng
    Song Lijun
    Wang Yan
    LASER & OPTOELECTRONICS PROGRESS, 2019, 56 (05)
  • [44] Darboux Transformation for Coupled Non-Linear Schrodinger Equation and Its Breather Solutions
    Feng, Lili
    Yu, Fajun
    Li, Li
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2017, 72 (01): : 9 - 15
  • [45] Breather and rogue wave solutions for the (2+1)-dimensional nonlinear Schrodinger-Maxwell-Bloch equation
    Jia, Rong-Rong
    Guo, Rui
    APPLIED MATHEMATICS LETTERS, 2019, 93 : 117 - 123
  • [46] Soliton, Breather, and Rogue Wave for a (2+1)-Dimensional Nonlinear Schrodinger Equation
    Zhang, Hai-Qiang
    Liu, Xiao-Li
    Wen, Li-Li
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (02): : 95 - 101
  • [47] Breather, soliton and rogue wave of a two-component derivative nonlinear Schrodinger equation
    Jia, Hui-Xian
    Zuo, Da-Wei
    Li, Xiang-Hong
    Xiang, Xiao-Shuo
    PHYSICS LETTERS A, 2021, 405
  • [48] Rogue wave solutions of the nonlinear Schrodinger equation with variable coefficients
    Liu, Changfu
    Li, Yan Yan
    Gao, Meiping
    Wang, Zeping
    Dai, Zhengde
    Wang, Chuanjian
    PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (06): : 1063 - 1072
  • [49] N-fold generalized Darboux transformation and breather–rogue waves on the constant/periodic background for a generalized mixed nonlinear Schrödinger equation
    Cui-Cui Ding
    Yi-Tian Gao
    Xin Yu
    Fei-Yan Liu
    Xi-Hu Wu
    Nonlinear Dynamics, 2022, 109 : 989 - 1004
  • [50] Generalized Darboux transformation and parameter-dependent rogue wave solutions to a nonlinear Schrödinger system
    Serge Paulin T. Mukam
    Abbagari Souleymanou
    Victor K. Kuetche
    Thomas B. Bouetou
    Nonlinear Dynamics, 2018, 93 : 373 - 383