Extended generalized Darboux transformation to hybrid rogue wave and breather solutions for a nonlinear Schrodinger equation

被引:150
|
作者
Li, Bang-Qing [2 ]
Ma, Yu-Lan [1 ]
机构
[1] Beijing Technol & Business Univ, Sch Math & Stat, Beijing 100048, Peoples R China
[2] Beijing Technol & Business Univ, Sch Comp & Informat Engn, Beijing 100048, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Extended generalized Darboux transformation; Nonlinear Schrodinger system; Breather; Rogue wave; Hybrid wave solution; HIGHER-ORDER; CONSERVATION-LAWS; SOLITON-SOLUTIONS; OPTICAL SOLITONS; DYNAMICS; SYSTEM; IMPACT; EVEN; ODD;
D O I
10.1016/j.amc.2020.125469
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An extended generalized Darboux transformation method is proposed to construct the hybrid rogue wave and breather solutions for a classical nonlinear Schrodinger equation. Three types of hybrid wave solutions are obtained: (i) the hybrid first-order rogue wave and breather; (ii) the hybrid second-order rogue wave and first-order breather; (iii) the hybrid first-order rogue wave and second-order breather. These solutions are novel and can be used to investigate the dynamical characteristic of the hybrid rogue waves and breathers. The control and interaction based on the parameters of the hybrid wave solution are graphically demonstrated. An exact link is established between the hybrid solutions and the rogue wave solutions via setting the parameter at special value. (C) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Darboux transformation of a new generalized nonlinear Schrodinger equation: soliton solutions, breather solutions, and rogue wave solutions
    Tang, Yaning
    He, Chunhua
    Zhou, Meiling
    NONLINEAR DYNAMICS, 2018, 92 (04) : 2023 - 2036
  • [2] Darboux transformation of a new generalized nonlinear Schrödinger equation: soliton solutions, breather solutions, and rogue wave solutions
    Yaning Tang
    Chunhua He
    Meiling Zhou
    Nonlinear Dynamics, 2018, 92 : 2023 - 2036
  • [3] Breather wave, rogue wave and solitary wave solutions of a coupled nonlinear Schrodinger equation
    Feng, Lian-Li
    Zhang, Tian-Tian
    APPLIED MATHEMATICS LETTERS, 2018, 78 : 133 - 140
  • [4] Breather and rogue wave solutions for the generalized discrete Hirota equation via Darboux-B?cklund transformation
    Fan, Fang-Cheng
    Xu, Zhi-Guo
    WAVE MOTION, 2023, 119
  • [5] Breather and rogue wave solutions of an extended nonlinear Schrodinger equation with higher-order odd and even terms
    Su, Dan
    Yong, Xuelin
    Tian, Yanjiao
    Tian, Jing
    MODERN PHYSICS LETTERS B, 2018, 32 (26):
  • [6] Soliton solution, breather solution and rational wave solution for a generalized nonlinear Schrodinger equation with Darboux transformation
    Fan, Chengcheng
    Li, Li
    Yu, Fajun
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [7] Rogue wave solutions for the higher-order nonlinear Schrodinger equation with variable coefficients by generalized Darboux transformation
    Zhang, Hai-Qiang
    Chen, Jian
    MODERN PHYSICS LETTERS B, 2016, 30 (10):
  • [8] The general mixed nonlinear Schrodinger equation: Darboux transformation, rogue wave solutions, and modulation instability
    Li, Wenbo
    Xue, Chunyan
    Sun, Lili
    ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [9] Generalized Darboux transformation and parameter-dependent rogue wave solutions to a nonlinear Schrodinger system
    Mukam, Serge Paulin T.
    Souleymanou, Abbagari
    Kuetche, Victor K.
    Bouetou, Thomas B.
    NONLINEAR DYNAMICS, 2018, 93 (02) : 373 - 383
  • [10] Generalized Darboux transformation for nonlinear Schrodinger system on general Hermitian symmetric spaces and rogue wave solutions
    Asadi, Esmaeel
    Riaz, H. W. A.
    Ganjkhanloo, Mohammad Ali
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (08)